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Abstract: Change point detection for high-dimensional data is an important yet challenging problem
for many applications. In this article, we consider multiple change point detection in the context of
high-dimensional generalized linear models, allowing the covariate dimension p to grow exponentially with
the sample size n. The model considered is general and flexible in the sense that it covers various specific
models as special cases. It can automatically account for the underlying data generation mechanism without
specifying any prior knowledge about the number of change points. Based on dynamic programming and
binary segmentation techniques, two algorithms are proposed to detect multiple change points, allowing
the number of change points to grow with n. To further improve the computational efficiency, a more
efficient algorithm designed for the case of a single change point is proposed. We present theoretical
properties of our proposed algorithms, including estimation consistency for the number and locations of
change points as well as consistency and asymptotic distributions for the underlying regression coefficients.
Finally, extensive simulation studies and application to the Alzheimer’s Disease Neuroimaging Initiative
data further demonstrate the competitive performance of our proposed methods.
Résumé: La détection de points de rupture dans des données en hautes dimensions est un problème important
mais comporte des défis majeurs pour de nombreuses applications. Dans cet article, nous considérons la
détection de points de changement multiples dans le contexte de modèles linéaires généralisés (GLM) de
grande dimension et dans lesquels la dimension des covariables p croît de façon exponentielle avec la
taille de l’échantillon n. Le modèle étudié est assez général et flexible pour permettre de couvrir différents
modèles particuliers. Il peut tenir compte du mécanisme de génération de données sous-jacent de façon
automatique et sans connaissance préalable du nombre de points de changement. En utilisant des techniques
de programmation dynamique et de segmentation binaire, nous proposons deux algorithmes de détection
de points de rupture multiples dont le nombre croît avec n. Pour une efficacité computationnelle accrue,
un algorithme plus efficace conçu pour le cas d’un seul point de changement est proposé. Nous établissons
les propriétés théoriques des algorithmes proposés, y compris la convergence de l’estimation du nombre
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et de la localisation des points de changement, ainsi que la convergence des coefficients du modèle de
régression sous-jacent. Enfin, nous établissons la performance des méthodes proposées sur des échantillons
finis par une vaste étude de simulation et les utilisons pour analyser un jeu de données réelles provenant de
l’initiative d’imagerie médicale pour la maladie d’Alzheimer (ADNI).

1. INTRODUCTION

With the advance of technology, complex large-scale data are prevalent in various scientific
fields. Data heterogeneity creates great challenges for the analysis of complex data that may not
be well approximated by a common distribution. Change point detection is a powerful tool to
deal with data heterogeneity. Since the seminal work by Page (1955), there is a growing literature
on change point detection with a wide range of applications, including genomics (Braun, Braun
& Müller, 2000), finance (Pesaran & Pick, 2007; Fan, Lv & Qi, 2011), and social networks
(Raginsky et al., 2012).

In this article, we consider multiple change point detection for a general framework
of high-dimensional generalized linear models (GLMs). Suppose we have n independent
observations {Yi,Xi}n

i=1 with

g(𝝁i) = XT
i 𝜷

(i) for i = 1,… , n, (1)

where Yi ∈  ⊂ ℝ is the real-valued response for the ith observation, Xi = (Xi1,… ,Xip)⊤ is
the corresponding covariate vector in  ⊂ ℝp, 𝝁i = 𝔼(Yi|Xi), g(⋅) is the link function, and
𝜷
(i) =

(
𝛽

(i)
1 ,… , 𝛽

(i)
p
)
⊤ ∈ ℝp is the unknown regression coefficient vector for the ith observation.

Then we consider estimating multiple change points with piecewise constant coefficients for
model (1). More specifically, let ̃k ≥ 0 be the true number of unknown change points along with
the true location vector �̃� = (𝜏0, 𝜏1… , 𝜏

̃k, 𝜏 ̃k+1)⊤ with 0 = 𝜏0 < 𝜏1 < 𝜏2 < · · · < 𝜏
̃k < 𝜏

̃k+1 = 1.
Then, the unknown ̃k change points divide the n time-ordered observations into ̃k + 1 intervals
and the underlying regression coefficients 𝜷(i) have the following form:

𝜷
(i) =

{
𝜷

0
, if ̃k = 0,

𝜷
0(𝑗), if 𝜏

𝑗−1 < i∕n ⩽ 𝜏
𝑗

, 𝑗 = 1,… ,
̃k + 1,

(2)

where 𝜷0(𝑗) =
(
𝛽

0
1 (𝑗),… , 𝛽

0
p (𝑗)
)
⊤ ∈ ℝp denotes the underlying true regression coefficients in

the 𝑗th interval. We focus on change point detection, which consists of estimating: (a) the number
of change points (̃k); (b) the locations of change points (�̃�); (c) the regression coefficients 𝜷0(𝑗)
in each segmentation, where 𝑗 = 1,… ,

̃k + 1.
There is a growing literature on change point detection. Most existing papers focus on change

point problems in the mean, variance, or covariance matrix either for a fixed p (Kirch, Muhsal
& Ombao, 2015; Zhang & Lavitas, 2018) or for a growing p (Frick, Munk & Sieling, 2014;
Jirak, 2015; Barigozzi, Cho & Fryzlewicz, 2018; Wang & Samworth, 2018; Wang, Yu &
Rinaldo, 2021). Progress has been made in the literature for detection of multiple change points
as well (Lavielle & Teyssière, 2006; Aue et al., 2009; Harchaoui & Lévy-Leduc, 2010; Cho &
Fryzlewicz, 2015). Despite progress on change point detection, many fewer papers appear in
the literature on regression change point problems, especially for high-dimensional models. The
main difficulty comes from the complexity of both calculation and theoretical analysis arising
from the growing dimension.

For regression problems, penalized techniques such as Lasso (Tibshirani, 1996) are popular in
dealing with high-dimensional data. Some theoretical properties of the Lasso and various exten-
sions can be found in Fan & Peng (2004), Candès & Tao (2007), and van de Geer et al. (2014).
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For a general overview and recent developments, we refer to Fan & Lv (2010) and
Tibshirani (2011). In terms of change point detection based on Lasso, some methods exist for
solving regression change point problems both in low and high dimensions. For example, designed
for a fixed p, Ciuperca (2014) considered multiple change point estimation based on the Lasso.
Qian & Su (2016) and Li, Qian & Su (2016) proposed a systematic change point estimation frame-
work based on the adaptive fused Lasso. When the data dimension p grows to infinity, Lee, Seo
& Shin (2016) considered high-dimensional linear models with a possible change point and pro-
posed a method for estimating regression coefficients as well as the unknown threshold parameter.
As an extension, Leonardi & Bühlmann (2016) proposed computationally efficient algorithms
for the number and locations of multiple change points in the context of high-dimensional linear
models. Recently, Liu, Zhang & Liu (2021) investigated simultaneous change point detection
and identification based on a de-biased Lasso process. Wang, Lin & Willett (2021) developed
variance projected wild binary segmentation (VPWBS) for multiple change point detection.

Note that the above-mentioned papers focused on change point detection based on linear
models with a continuous response, and thus are not directly applicable to the analysis of
categorical or count response variables in practice. GLM can be very useful in this situation
because it covers the exponential family distributions for the response variable. Because of
its generality, GLM is widely used in various applications such as genetics, economics, and
epidemiology. Several papers studied low-dimensional, single change point problems in the
context of GLM (Lee & Seo, 2008; Lee, Seo & Shin, 2011; Fong, Di & Permar, 2015). To
the best of our knowledge, change point detection for high-dimensional GLMs has not been
studied in the literature. Hence, it is desirable to consider a flexible and general framework for
analyzing high-dimensional data with heterogeneity. Motivated by this, in this article, we consider
computationally efficient multiple change point detection in the context of high-dimensional
GLMs. Our main contributions are summarized as follows:

• We consider change point problems in a more flexible and general framework of
high-dimensional GLMs, allowing the data dimension p to grow exponentially with the
sample size n. It covers various model settings including linear models, logistic, and probit
models as special cases. As far as we know, change point detection for high-dimensional
logistic and probit models has not been considered in the literature.

• Under the above framework, we propose a three-step procedure to estimate the number and
locations of change points based on the Lasso estimator of the regression coefficients. The
basic idea is to choose a useful contrast function J(𝝉(k)), which satisfies J(�̂�(̂k)) < J(𝝉(k))
for any 𝝉(k). To solve this optimization problem, we propose two algorithms based on
dynamic programming and binary segmentation techniques, which have computational costs
of O(n2GLMLasso(n)) and O(n log(n)GLMLasso(n)), respectively, where GLMLasso(n) is
the cost to compute the Lasso estimator for the GLM with the sample size n. We also propose
a much more efficient approach for the single change point case, with a computational cost
of O(log(n)GLMLasso(n)). To the best of our knowledge, this is the most computationally
efficient algorithm available for detecting a single change point in GLMs.

• We examine some theoretical properties of our proposed change point estimators computed
by the three algorithms. To be specific, under some mild conditions, both the dynamic
programming and binary segmentation techniques can obtain a consistent estimator for the
number and locations of the true change points with a rate of Op(

√
log(p)∕n), which covers

the case with an asymptotically growing number of change points. Moreover, the estimation
error of the Lasso estimator of underlying regression coefficients can be bounded to op(1).
To achieve further statistical prediction and inference, we introduce the de-biased Lasso
estimator of the underlying regression coefficients in each segmentation, which is shown to
be asymptotically normal. As for the third efficient approach designed for single change point
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cases, we establish that it can identify the location of the change point with high estimation
accuracy. Finally, the competitive performance of our proposed methods is demonstrated by
extensive numerical results as well as application to the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset.
For a better understanding of our work, we would like to point out its relationship with

several related papers. Compared with Lee, Seo & Shin (2011), which considered single change
point detection for the binary response variable with low-dimensional covariates, we overcome
the challenges of the computational and theoretical complexity arising from the growing
dimension and number of change points. Meanwhile, to address the issue of the unknown
multiple change points, we construct accurate and effective algorithms based on two techniques,
dynamic programming and binary segmentation. These techniques are popular for multiple
change point detection and were previously studied by Lavielle & Teyssière (2006), Boysen
et al. (2009), Harchaoui & Lévy-Leduc (2010), Cho & Fryzlewicz (2012, 2015), and Leonardi
& Bühlmann (2016). Our extension to GLMs involves several technical challenges to overcome.
One substantial difficulty comes from the complex form of the contrast functions compared with
the least squares for linear models considered in Leonardi & Bühlmann (2016).

The rest of this article is organized as follows. In Section 2, we introduce our methodology
and demonstrate how our proposed three algorithms detect change points. In Section 3, the
corresponding theoretical results of the change points computed by different algorithms are
established. We investigate the performance of our proposed methods by extensive numerical
results as well as a real data application in Sections 4 and 5. We summarize the article in
Section 6. Detailed proofs of the main theorems and some useful lemmas are given in the
Appendix.

2. METHODOLOGY

In this section, we introduce our new methodology for model (1) with multiple unknown
change points. In particular, in Section 2.1, some notation is introduced. In Section 2.2, we
present a three-step change point estimator including the number and the locations of change
points. Meanwhile, the regression coefficients in each segment are estimated based on the
Lasso. In Sections 2.2.1 and 2.2.2, based on dynamic programming and binary segmentation
techniques, two algorithms are proposed to detect multiple change points. To further improve the
computational efficiency, in Section 2.2.3, we present a much more efficient algorithm designed
for the case of a single change point.

2.1. Notation

We first introduce some notation. For a vector a =
(
a1,… , ap

)
⊤ ∈ ℝp, we denote

||a||1 =
∑p

i=1|ai|, ||a||2 =
(∑p

i=1a2
i

)1∕2, and ||a||∞ = max1≤i≤p |ai|. For two real-valued
sequences an and bn, we set an = O(bn) if there exists a constant C such that |an| ≤ C|bn|,
for a sufficiently large n. We set an = o(bn) if an∕bn → 0 as n → ∞. For a sequence

of random variables {𝜉1, 𝜉2,…}, we set 𝜉n
ℙ
−→ 𝜉 if 𝜉n converges to 𝜉 in probability as

n → ∞. We also denote 𝜉n = op(1) if 𝜉n
ℙ
−→ 0. Given an interval (u, v) ⊂ [0, 1] such that

u, v ∈ L1 = {i∕n, i = 1,… , n, n ∈ ℕ}, we denote the vector
(
Yun+1,… ,Yvn

)
⊤ by Y(u,v) and the

vector (𝜖un+1,… , 𝜖vn)⊤ by 𝝐(u,v). Analogously, we use X(u,v) to denote the (v − u)n × p dimen-

sional matrix
(
X(1)(u,v),… ,X(p)(u,v)

)
, where X(𝑗)(u,v) =

(
X(𝑗)un+1,… ,X(𝑗)vn

)
⊤ with 𝑗 = 1,… , p, and we use

̂𝜷(u,v) to denote the Lasso estimator based on the observations Y(u,v) and X(u,v). For a set A, we use
#A to denote its cardinality. For any x ≥ 0, we use [x] to denote the largest integer less than or
equal to x. We use C1,C2,… to denote generic positive constants that may vary in different places.
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2.2. New Estimation and Algorithms
Let Y = (Y1,… ,Yn)⊤ denote the n × 1 response vector, and X the n × p design matrix with
Xi = (Xi1,… ,Xip)⊤ being its ith row for 1 ≤ i ≤ n. In this article, we assume {Xi}n

i=1 are
independently and identically distributed (i.i.d.) p-dimensional random vectors with mean zero
and covariance matrix 𝚺 = Cov(X1). Furthermore, for 𝑗 = 1,… ,

̃k + 1, we denote by 𝑆

(𝑗) the
set of nonzero elements of the regression coefficients 𝜷0(𝑗), i.e., 𝑆(𝑗) = #{𝓁 ∶ 𝛽0

𝓁(𝑗) ≠ 0 for 𝓁 =
1,… , p}. For any given partition 𝝉 = (𝜏0, 𝜏1,… , 𝜏k, 𝜏k+1)⊤, we denote the 𝑗th interval by
I
𝑗

(𝝉) = (𝜏
𝑗−1, 𝜏𝑗), the length of the 𝑗th interval by r

𝑗

(𝝉) = 𝜏
𝑗

− 𝜏
𝑗−1, the shortest interval length

by r(𝝉) = min1≤𝑗≤k+1 r
𝑗

(𝝉), and the change point number by l(𝝉). Moreover, we denote the
minimum interval length by 𝛿.

We are now ready to introduce our change point estimator in detail. We consider the
Lasso-type 𝓁1-penalized estimator for high-dimensional GLMs. Such estimators have some
desirable properties. In particular, van de Geer (2008) derived some theoretical properties
including consistency and the oracle inequality, based on which our algorithms are mainly
constructed. More specifically, let 𝜌

𝜷
(x, y) ∶  ×  → ℝ be some loss function relative to g(⋅).

For instance, if g(⋅) is the logit function, 𝜌
𝜷
(x, y) will then be the negative-likelihood function in

the form log
(
1 + ex⊤𝜷) − yx⊤𝜷. For 𝜷 ∈ ℝp, we define �̇�

𝜷
∶= 𝜕𝜌𝜷

𝜕𝜷
and �̈�

𝜷
∶= 𝜕𝜌𝜷

𝜕𝜷𝜕𝜷
T . Note that

such complex loss functions lead to substantial difficulty for the estimation of change points
as well as regression coefficients. Given data observations {Yi,Xi}n

i=1, the Lasso-based GLM
method solves the following 𝓁1 penalized problem:

̂𝜷 = arg min
𝜷

{

1
n

n∑

i=1

𝜌
𝜷

(
Xi,Yi

)
+ 𝜆||𝜷||1

}

. (3)

Because we consider heterogeneous data with possible multiple change points, we cannot use
Equation (3) directly to obtain parameter estimation. The main challenge is that both the number
(̃k) and the locations (�̃�) are unknown. To solve this issue, we consider three steps.

Before introducing the change point estimator, we first demonstrate how to estimate the
regression coefficients for each segment. To be specific, for any given candidate partition
𝝉 =
(
𝜏0, 𝜏1,… , 𝜏k, 𝜏k+1

)
⊤, with 𝜏

𝑗

∈ L1
, 𝑗 = 1,… , k + 1, we obtain the estimator with the 𝓁1

penalty in each segment by, for 𝑗 = 1,… , k + 1,

̂𝜷(𝝉 , 𝑗) = arg min
𝜷

⎧
⎪
⎨
⎪
⎩

1
n

n𝜏
𝑗∑

i=n𝜏
𝑗−1+1

𝜌
𝜷

(
Xi,Yi

)
+ 𝜆

𝑗

√

(𝜏
𝑗

− 𝜏
𝑗−1)||𝜷||1

⎫
⎪
⎬
⎪
⎭

, (4)

where 𝜆
𝑗

is the non-negative regularization parameter.
Based on Equation (4), our new algorithms for estimating both ̃k and �̃� are summarized into

the following three steps.

Step 1 (Search the “best” partition). Given the candidate number of change points k, we find the
“best” partition �̂�(k) = (𝜏1,… , 𝜏k)⊤ that minimizes the total loss function (contrast function):

�̂�(k) = arg min
𝝉=(𝜏0,…,𝜏k+1)⊤

J
(
𝝉 , ̂𝜷(𝝉),X,Y

)
+ 𝛾(k + 1), (5)

where ̂𝜷(𝜏) ∶=
(
̂𝜷
(
𝝉 , 1
)
⊤

,… ,
̂𝜷
(
𝝉 , k + 1

)
⊤
)
⊤, J

(
𝝉 , ̂𝜷(𝝉),X,Y

)
∶=
∑k+1

𝑗=1Pn𝜌

(

I
𝑗

(𝝉), ̂𝜷(𝝉 , 𝑗)
)

,

and Pn𝜌
(
I
𝑗

(𝝉), 𝜷
)
∶= 1

n

∑n𝜏
𝑗

i=n𝜏
𝑗−1+1𝜌𝜷 (Xi,Yi).
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Step 2 (Estimate number of change points). We put �̂�(k) into J(𝝉 , ̂𝜷(𝝉),X,Y) and obtain the
minimum loss function associated with k as

G(k) ∶= J
(
�̂�(k), ̂𝜷

(
�̂�(k)
)
,X,Y

)
+ 𝛾(k + 1). (6)

Then, we find the “best” estimation that minimizes G(k) with a penalty:

̂k = arg min
k

G(k). (7)

Step 3 (Estimate locations of change points). We put ̂k into Step 1 and obtain the final change
point estimator �̂� ∶= �̂�(̂k) = (𝜏1,… , 𝜏

̂k)⊤ by

�̂� = arg min
𝝉=(𝜏0,…,𝜏

̂k+1)⊤
J
(
𝝉 , ̂𝜷(𝝉),X,Y

)
. (8)

Combining Steps 1–3, our final change point estimators ̂k and �̂� can be obtained equivalently
in the following form:

�̂� = arg min
k

min
𝝉∶l(𝝉)=k

{
J(𝝉 , ̂𝜷(𝜏),X,Y) + 𝛾(k + 1)

}
. (9)

After the above three steps, we obtain the change point estimators �̂� . As for 𝜷0, we recommend
two different Lasso estimators of the underlying regression coefficients 𝜷0, serving different
purposes for practitioners. In particular, naturally, we can use the Lasso estimator of 𝜷0 to select
variables and make a prediction, which is defined for 𝑗 = 1,… ,

̂k + 1 as

̂𝜷(�̂� , 𝑗) = arg min
𝜷

⎧
⎪
⎨
⎪
⎩

1
n

n𝜏
𝑗∑

i=n𝜏
𝑗−1+1

𝜌
𝜷

(
Xi,Yi

)
+ 𝜆

𝑗

√

(𝜏
𝑗

− 𝜏
𝑗−1)||𝜷||1

⎫
⎪
⎬
⎪
⎭

.

For further statistical inference including confidence intervals and hypothesis testing, van de
Geer et al. (2014) proposed the de-biased Lasso estimator and analyzed its asymptotic properties
for the homogeneous model under high-dimensional set-ups. Similarly, for the heterogeneous
observations, we construct a de-biased Lasso estimator for the underlying regression coefficients
for each segmentation for 𝑗 = 1,… ,

̂k + 1 as

̃𝜷(�̂� , 𝑗) = ̂𝜷(�̂� , 𝑗) − ̂𝚯Pn�̇� ̂𝜷(�̂� ,𝑗),

where the precision matrix estimator ̂𝚯 = ̂𝚯Lasso can be constructed using nodewise Lasso with
̂𝚺 ∶= Pn�̈� ̂𝜷(�̂� ,𝑗) as input (van de Geer et al., 2014).

In what follows, we introduce three specific algorithms for solving Equation (9). Note
that J(𝝉 ,𝜷,X,Y) and Pn𝜌(I𝑗(𝝉), 𝜷) are the loss function for all intervals and the 𝑗th interval,
respectively. Meanwhile, 𝜆

𝑗

in Equation (4) and 𝛾 in Equation (5) are positive tuning parameters
that encourage coefficient and segment sparsity, respectively. We adopt a cross-validation
approach to make a proper choice of these two tuning parameters 𝜆 and 𝛾 . To compute ̂𝜷(𝝉 , 𝑗)
in Equation (4), we can use, for example, the R package glmnet (https://glmnet.stanford.edu). It
is worth mentioning the following two remarks for our proposed estimator: (1) If the number of

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11721
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change points ̃k is known, we just use Step 1 by plugging in k = ̃k to directly obtain the locations
of change points as follows:

�̂�(̃k) = arg min
𝝉=(𝜏0,…,𝜏

̃k+1)⊤
J
(
𝝉 , ̂𝜷(𝝉),X,Y

)
. (10)

In this case, our method covers the setting considered by Lee, Seo & Shin (2016), where at
most one change point is assumed. (2) When no change point occurs (̃k = 0), our proposed
method can still work. Hence, our proposed method can automatically account for the underlying
data generation mechanism (̃k = 0 or ̃k > 0) without specifying any prior knowledge about the
number of change points ̃k. Furthermore, as shown by our extensive numerical studies, our new
algorithms can estimate ̃k with high accuracy.

Our main goal is to design efficient algorithms that solve the optimization problem in
Equation (9) of the form J(𝝉 , ̂𝜷) + Pen(𝝉). To address this issue, three algorithms are proposed
next.

2.2.1. Dynamic programming approach
We introduce a general approach based on the dynamic programming algorithm (DPA), which
works well for our change point problem (Eq. 9). It is well known that DPA has excellent accuracy
because it considers the global solution of Equation (9). It is widely used in multiple change
point detection including the efficient, parallelized approaches introduced recently by Tickle
et al. (2020). More details can be found in Boysen et al. (2009) and Leonardi & Bühlmann (2016).
Next, we present how to use this technique to solve Equation (9) in detail.

For any given v ∈ {i∕n ∶ i = 1,… , n}, consider the sample
(
Y(0,v],X(0,v]

)
. Given a candidate

change point number k, denote Fk(v) as the minimum value as follows:

Fk(v) ∶= min
𝝉∶ l(𝝉)=k

k+1∑

𝑗=1

(

Pn𝜌

(

I
𝑗

(v𝝉), ̂𝜷(𝝉 , 𝑗)
)

+ 𝛾

)

. (11)

One can see that the optimal k + 1 segments {(𝜏
𝑗−1, 𝜏𝑗)}k+1

𝑗=1 corresponding to the change point
vector 𝝉 = (𝜏0, 𝜏1,… , 𝜏k+1)⊤ obtained from Equation (11), consist of the optimal first k segments
{(𝜏

𝑗−1, 𝜏𝑗)}k
𝑗=1 and a single segment (𝜏k, 𝜏k+1)⊤. Recall that 𝜏0 ∶= 0 and 𝜏k+1 ∶= 1. Then 𝜏k is the

rightmost change point estimator. Furthermore, by definition of Fk(v), {(𝜏𝑗−1, 𝜏𝑗)}k
𝑗=1 obtained

from Equation (11) is also a minimizer of Fk−1(𝜏k). Hence, the last change point 𝜏k is the
minimizer of Fk−1(u) + Pn𝜌

(
(u, v), ̂𝜷(u,v)

)
+ 𝛾 with u < v.

The above observation motivates us to use the dynamic programming recursion to calculate
Fk(v) with v ∈ {i∕n ∶ i = 1,… , n}. In particular, for any v ∈ {i∕n ∶ i = 1,… , n}, define

F0(v) = Pn𝜌
(
(0, v), ̂𝜷(0,v)

)
+ 𝛾. (12)

Then, the dynamic programming recursion proceeds as follows:

Fk(v) = min
u∈{i∕n∶ i=1,…,n}

u<v

{
Fk−1(u) + Pn𝜌

(
(u, v), ̂𝜷(u,v)

)
+ 𝛾

}
, v ∈ {i∕n ∶ i = 1,… , n}. (13)

Define Vn = {i∕n ∶ i = 1,… , n}. Based on Equations (12) and (13), we can obtain {F1(v), v ∈
Vn}, {F2(v), v ∈ Vn}, … , and

{
Fkmax

(v), v ∈ Vn
}

, where kmax (in our case kmax + 1 = 1∕𝛿) is an
“upper bound” of the number of change points. See Section 3.2 for more details. By considering
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G(k) in (6), we have Fk(1) = G(k) with k = 1,… , kmax. Hence, we are ready to estimate the
change point number by

̂k = arg min
k=1,…,kmax

Fk(1). (14)

The corresponding locations of change points �̂� =
(
0, 𝜏1,… , 𝜏

̂k, 1
)
⊤ can be obtained by

𝜏
𝑗

= arg min
u∈Vn,u<𝜏𝑗+1

{
F
𝑗−1(u) + Pn𝜌

(

(u, 𝜏
𝑗+1), ̂𝜷(u,𝜏

𝑗+1)

)

+ 𝛾, for 𝑗 = ̂k,… , 1. (15)

The following Algorithm 1 describes our procedure for obtaining ̂k and �̂� based on the
DPA. Note that DPA solves Equation (9) with globally optimal solutions, which have excellent
estimation accuracy. Furthermore, as shown in Leonardi & Bühlmann (2016), it has the
computational cost of O(n2GlmLasso(n)) operations. This can be computationally expensive,
especially when n is very large. Hence, it is desirable to consider a more efficient approach.
Next, we introduce an efficient approach based on binary segmentation, which can ensure almost
the same estimation accuracy as that of DPA.

Algorithm 1. Dynamic programming procedure for change point detection in high-dimensional
GLMs.

Input: Given the dataset {X,Y}, set the value of kmax.
Step 1: Based on Equations (12)–(13), compute Fk(1) for k = 1,… , kmax.
Step 2: Obtain estimate of the number of change points ̂k by Equation (14).
Step 3: Obtain estimate of the change point locations �̂� by Equation (15).
Output: Algorithm 1 provides the change point estimator �̂�(̂k) = (0, 𝜏1,… , 𝜏

̂k, 1)⊤, including
both the number and locations.

2.2.2. Binary segmentation approach
Next we introduce an approach based on the binary segmentation algorithm (BSA) examined
in Cho & Fryzlewicz (2012, 2015), and Leonardi & Bühlmann (2016), which is shown to be
much more efficient compared with DPA. The main idea of BSA for solving the change point
problem for GLMs (Eq. 9) is that for each candidate search interval (u, v), we use the penalized
loss function to determine whether a new change point s can be added. If s is identified, then the
interval (u, v) is split into two subintervals (u, s) and (s, v) and we conduct the above procedure
on (u, s) and (s, v) separately. This algorithm is continued until no new subintervals can be added.
In particular, for any given u, v ∈ Vn ∶= {i∕n ∶ i = 1,… , n}, we define

Z(u, v) =

{
Pn𝜌

(

(u, v], ̂𝜷(u,v]
)

+ 𝛾, if (v − u)n ≥ 1,

0, otherwise,
(16)

and
h(u, v) = arg min

s∈{u}∪[u+𝛿,v−𝛿]
{Z(u, s) + Z(s, v)}. (17)

Then, we present our BSA-based algorithm as follows.
Note that this approach searches many fewer candidates for finding a new change point as

compared with DPA, which makes it more computationally efficient. More specifically, as shown
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by Leonardi & Bühlmann (2016), BSA has a computational cost of O(n log(n)GlmLasso(n))
operations. Furthermore, in Section 3.2, we prove that the change point estimator computed by
Algorithm 2 enjoys almost the same estimation accuracy as that of Algorithm 1.

Algorithm 2. Binary segmentation procedure for change point detection in high-dimensional
GLMs.

Input: Given the dataset {X,Y}, initialize the set of change point pairs T = {0, 1}.
Step 1: For each pair {u, v} in T , compute s = h(u, v) as defined in Equation (17). If s> u,

add new pairs of nodes {u, s} and {s, v} to T and update T as T = T ∪ {u, s} ∪ {s, v}.
Step 2: Repeat Step 1 until no more new pairs of nodes can be added. Denote the terminal

set of change point pairs by Tfinal = ∪
q
i=1{ui, vi}.

Output: Algorithm 2 provides the change point estimator �̂�
b =
(

𝜏

b
0 ,… , 𝜏

b
̂kb+1

)
⊤

,

where ̂kb = #Tfinal and 0 = 𝜏

b
0 < 𝜏

b
1 < · · · < 𝜏

b
̂kb
< 𝜏

b
̂kb+1

= 1 ∈ Tfinal, including both
the number and locations.

2.2.3. A fast screening approach for single change point models
So far, we have proposed two efficient algorithms in Sections 2.2.1 and 2.2.2 for solving
Equation (9). In this section, we show that under the single change point models, the computational
cost can be further reduced. As far as we know, our fast screening approach (FSA) is novel
for detecting a single change point in regression models. The main idea is that for detecting a
single change point, if we have some prior information about its location, it is not necessary
to search all candidate subintervals that have been adopted in the BSA-based algorithm. To
see this, we recall Z(u, v) as defined in Equation (16). For 𝜏𝑓 ∈ (0, 1), we define the statistics
as W

𝜏
𝑓 ((u, v)) = Z

(
u, u + 𝜏

𝑓 (v − u)
)
+ Z
(
u + 𝜏

𝑓 (v − u), v
)
. Based on W

𝜏
𝑓 ((u, v)), we have the

following key observation: Consider any subinterval (u, v) containing a single change point
𝜏 ∈ (u, v). If 𝜏 lies in the first half interval of (u, v), i.e., 𝜏 ∈

(
u, u + 1

2
(v − u)

)
, with a high

probability, we can prove that W1∕4((u, v)) < W3∕4((u, v)). If 𝜏 lies in the second half interval
of (u, v), i.e., 𝜏 ∈

(
u + 1

2
(v − u), v

)
, with a high probability, we have W3∕4((u, v)) < W1∕4((u, v)).

The above observation motivates us to design Algorithm 3 for fast change point identification.
Note that Algorithm 3 does not need to search through all data points, and it can quickly

identify the half interval where the change point is located by comparing the quarter, half, and
three-quarter values of W(Ti) in each iteration. As a result, it only takes O(log(n)GLMLasso(n))
computational operations to detect the change point. Hence, as compared with Algorithms 1
and 2, the computational cost can be dramatically reduced. Its computational benefits will be
validated by our numerical experiments in Section 4.

3. THEORETICAL PROPERTIES

We examine the theoretical properties of our proposed three approaches. In particular, we first
show that our estimation of change points and regression coefficients is consistent and has the
same rates of convergence as those of linear models. Secondly, for GLMs with change points, we
reconstruct our assumptions and lemmas for analyzing high-dimensional data with heterogeneity
based on the work of van de Geer (2008). Note that van de Geer (2008) considered the 𝓁1
penalized estimation of the regression coefficients under the setting of all observations from the
same GLM. In particular, in Section 3.1, we introduce some assumptions. In Section 3.2, we
present theoretical results of the change point estimator computed by the new algorithms.
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Algorithm 3. A fast screening approach for single change point detection in high-dimensional
GLMs

Input: Input the dataset {X,Y}.
Step 0: Set u0 = 0, v0 = 1.
Step 1: For each iteration i = 0, 1, 2,…, let Ti = [ui, vi]. Calculate the values of W 1

4
(Ti),

W 1
2
(Ti), and W 3

4
(Ti). Set M(Ti) = min

(
W 1

4
(Ti),W 1

2
(Ti),W 3

4
(Ti)
)
.

For each iteration i, consider the following three cases:
If M(Ti) = W 1

4
(Ti), set Ti+1 = [ui, ui + 1∕2(vi − ui)];

if M(Ti) = W 1
2
(Ti), set Ti+1 = [ui + 1∕4(vi − ui), ui + 3∕4(vi − ui)];

if M(Ti) = W 3
4
(Ti), set Ti+1 = [ui + 1∕2(vi − ui), vi].

Step 2: Repeat Step 2 until [n ∗ (vi∗ − ui∗ )] ≤ 4 holds for some i∗. Denote Ti∗ by ̂T .
Step 3: Calculate 𝜏

𝑓 = arg min
𝜏∈ ̂T W

𝜏
𝑓 ( ̂T).

Output: This algorithm provides a single change point estimator 𝜏𝑓 .

Before presenting the theoretical results, we introduce some additional notation. For any
u, v ∈ Vn ∶= {i∕n ∶ i = 1,… , n}with u < v, we denote, for a function 𝜌(x, y) ∶  ×  → ℝ, the
subinterval-based theoretical mean and empirical mean by P𝜌((u, v)) ∶= 1

n

∑vn
i=un+1𝔼𝜌

(
Xi,Yi

)
,

and Pn𝜌((u, v)) ∶=
1
n

∑vn
i=un+1𝜌

(
Xi,Yi

)
, respectively. For convenience, we denote P𝜌 = P𝜌((0, 1))

and Pn𝜌 = Pn𝜌((0, 1)). Consider a linear subspace ∶=
{
𝑓
𝜷
(x) = x⊤𝜷 ∶ 𝜷 ∈ Rp}. For a𝑓

𝜷
∈  ,

define 𝜌
𝑓𝜷
(x, y) = 𝜌(𝑓

𝜷
(x), y). Then the empirical risk and theoretical risk at 𝑓 are defined

as Pn𝜌𝑓 and P𝜌
𝑓

, respectively. Furthermore, we define the target as the minimizer of the
theoretical risk 𝑓

0 ∶= arg min
𝑓∈P𝜌

𝑓

and 𝜷0 ∶= arg min
𝜷∈ℝp P𝜌

𝑓𝜷
, where 𝜷0 can be regarded

as the “truth”. By definition, we have 𝑓

0(x) = x⊤𝜷0. For 𝑓
𝜷
∈  , the excess risk is defined

as (𝑓
𝜷
) ∶= P

(

𝜌
𝑓𝜷
− 𝜌

𝑓
0

)

. Lastly, for any subinterval (u, v), we define the oracle 𝜷
∗
(u,v)

as 𝜷∗(u,v) ∶= arg min
𝜷∈ℝp

{

(
𝑓
𝛽

)}
. The corresponding estimation error is then denoted as

𝜖

∗ ∶=
(
Pn − P

)
𝜌
𝑓
𝜷∗
.

3.1. Basic Assumptions
We introduce some assumptions as follows.

Assumption A (loss function). The loss function 𝜌
𝑓

(x, y) ∶= 𝜌(𝑓 (x), y) is convex for all y ∈ ℝ.
Moreover, it satisfies the Lipschitz property:

|𝜌(𝑓
𝜷
(x), y) − 𝜌(𝑓̃𝜷

(x), y)| ≤ ||
|
𝑓
𝜷
(x) − 𝑓̃𝜷

(x)||
|
, ∀(x, y) ∈  ×  , ∀𝜷, ̃𝜷 ∈ ℝp

.

Assumption B (design matrix). There exists KX <∞ such that ||Xi||∞ ≤ KX and 𝔼(Xi) = 0 hold
for all i = 1,… , n.

Assumption C (margin condition). There exists an 𝜂 > 0 and a strictly convex increasing
function G(x), such that for all 𝜷 ∈ ℝp with ||𝑓

𝜷
− 𝑓

0||∞ ≤ 𝜂, one has

(𝑓
𝜷
) ≥ G

(
||𝑓

𝜷
− 𝑓

0||
)
,

where there exists a constant C such that G(x) ≥ Cx2 for any positive x.
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Assumption D (compatibility condition). The compatibility condition is met for the set 𝑆∗ =
∪̃k+1
𝑗=1𝑆

(𝑗) (𝑆(𝑗) defined in Section 2.2) with constant 𝜙∗ > 0, if for all 𝜷 ∈ Rp satisfying
‖
‖
‖
𝜷
𝑆

c
∗
‖
‖
‖1
≤ 3 ‖‖
‖
𝜷
𝑆∗
‖
‖
‖1

, it holds that

‖
‖
‖
𝜷
𝑆∗
‖
‖
‖

2

1
≤
(
𝜷
⊤X⊤X𝜷

)
s∗∕𝜙2

∗,

where s∗ ∶= #𝑆∗ is the cardinality of 𝑆∗.

Assumption E (parameter space). For k0 > 1, there exist constants m∗ > 0 and M∗ > 0 such that

min
1≤i≤𝑗≤k≤̃k+1

‖
‖
‖

∑
𝑗

r=i𝛾(i, r, 𝑗)𝜷
0(r) −

∑k
r=𝑗+1𝛾(𝑗 + 1, r, k)𝜷0(r)‖‖

‖1

s∗
≥ m∗,

where 𝛾(i, 𝑗, k) = 𝜏
𝑗
−𝜏

𝑗−1

𝜏k−𝜏 i−1
,

s∗ = o
(√

n∕ log(p)
)
, max

1≤𝑗≤̃k+1
||𝜷0(𝑗)||∞ ≤ M∗, and max

1<𝑗≤̃k+1
||𝜷0(𝑗) − 𝜷0(𝑗 − 1)||∞ ≤ M∗.

Note that in the case ̃k = 1, the former condition reduces to ||𝜷0(1) − 𝜷0(2)||1 ≥ m∗s∗.

We assume in Assumption A that the loss function 𝜌 is Lipschitz in 𝑓 , which allows
us to bound the loss function by the difference between estimated regression parameters and
the corresponding true parameters. Many functions can meet this condition, for example, the
negative-likelihood function of the logistic regression model. Assumption B imposes relatively
weak conditions on the covariates, which covers a wide range of distributional patterns.
Assumption C (margin condition) is assumed for a “neighbourhood” of the target linear function
𝑓

0 = XT
𝜷

0 and is a common condition for analyzing the GLM. See Section 6.4 in Bühlmann
& van de Geer (2011) for more details. Assumption D (compatibility condition) for the design
matrix X allows us to establish oracle results for Lasso estimation. Note that one can verify that
Assumption D is a sufficient condition of Assumption C in van de Geer (2008) by choosing
the function D() = #𝜷2, where # is the cardinality of the set  ⊂ {1,… , p} defined in
Assumption C of van de Geer (2008). Assumption E presents the minimum and maximum
differences between the true regression parameters, which allow us to detect the change points.
Furthermore, the sparsity of regression coefficients is required to guarantee the consistency of
our proposed estimators. Assumption F introduced in the Appendix imposes some technical
conditions on the tuning parameter 𝜆 for the Lasso estimation as well as the tuning parameter 𝛾
for the change point estimation. Assumption G includes the required condition for the limiting
property of the de-biased Lasso estimator.

3.2. Main Results
We are ready to present some theoretical results of our proposed three new algorithms. Before
that, we denote c∗ = m2

∗𝜙
2
∗∕M∗ and let d∗ be a constant. See more details in Lemma 5. We first

present the properties of the estimators computed by DPA in Algorithm 1.

Theorem 1. Suppose Assumptions A–G hold with log(p) = o(n). Then, for a given C1 > 0, with

probability of at least 1 − 7 exp
(

−C1
n2

log(p)

)

, we have that

DOI: 10.1002/cjs.11721 The Canadian Journal of Statistics / La revue canadienne de statistique
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(1) l(�̂�) = ̃k;
(2) ||�̂� − �̃�||1 ≤ c∗

√
𝛿𝜆;

(3)
∑̃k+1

𝑗=1
|
|
|
Pn𝜌
(
I
𝑗

(�̂�), ̂𝜷(�̂� , 𝑗)
)
−Pn𝜌

(
I
𝑗

(�̂�), 𝜷0(𝑗)
)|
|
|
+𝜆r

𝑗

(�̂�)|| ̂𝜷(�̂� , 𝑗)−𝜷0(𝑗)||1 ≤ (̃k + 1)d∗s∗𝜆2;
(4) for each 𝑗 ∈ {1,… ,

̂k},
√

n
(
̃
𝛽s(�̂� , 𝑗) − 𝛽

0
s (𝑗)
)
∕�̂�

𝑗,s = V
𝑗,s + oP(1) for s ∈ {1,… , p},

where ̃
𝛽s(�̂� , 𝑗) is the sth component of ̃𝜷(�̂� , 𝑗), V

𝑗,s ∼ (0, 1) and �̂�

2
𝑗,s ∶=

(
̂𝚯
𝑗

Pn�̇� ̂𝜷
�̇�

T
̂𝜷

̂𝚯T
𝑗

)

s,s.

Theorem 1 demonstrates that Algorithm 1 can identify both the number and locations of
multiple change points with high estimation accuracy. In particular, the first result shows that
we can obtain a consistent estimator l(�̂�) for the true number of change points. As for the
locations, the second result indicates that our multiple change point estimator �̂� converges to the
true change point vector �̃� with a rate of Op(

√
log(p)∕n). Furthermore, the third result implies

that we can bound the prediction error or the estimation error of the underlying regression
parameters within a rate of Op(̃ks∗𝜆

2) or Op(̃ks∗𝜆). Result (4) implies the asymptotic normality
of the de-biased Lasso estimator ̃𝜷(�̂�), which allows the wider statistical inference including
confidence intervals and hypothesis testing.

Based on Theorem 1, some other interesting conclusions can be made. To simplify the
discussion, we require that all the ̃k + 1 change point intervals are within the same order of
magnitude. Recall 𝛿 as the minimum length of change point intervals as defined in Section 2.2.
Then we have ̃k(kmax) = O(1∕𝛿). Furthermore, according to 𝛿, the following two cases are
considered: (1) 𝛿 = O(1) and (2) 𝛿 = o(1).

For the first case, we have ̃k = O(1), which means that the number of change points is fixed
and does not increase with the sample size n. Furthermore, considering Assumption F1, we have
𝜆 = O(

√
log(p)∕n). Hence, the three results in Theorem 1 reduce to:

||�̂� − �̃�||1 = Op
(√

log(p)∕n
)
,

̃k+1∑

𝑗=1

|
|
|
Pn𝜌
(
I
𝑗

(�̂�), ̂𝜷(�̂� , 𝑗)
)
− Pn𝜌

(
I
𝑗

(�̂�), 𝜷0(𝑗)
)|
|
|
= Op

(

s∗
log(p)

n

)

, and

̃k+1∑

𝑗=1

|| ̂𝜷(�̂� , 𝑗) − 𝜷0(𝑗)||1 = Op

(

s∗

√
log(p)

n

)

. (18)

Considering Equation (18), our results are consistent with the Lasso estimation results derived
in van de Geer (2008) and estimation consistency is guaranteed as long as s∗

√
log(p)∕n = o(1)

holds.
We next consider the second case with 𝛿 = o(1). In this case, we allow the number of change

points to grow with n. Noting that𝜆
√
𝛿 = O

(√
log(p)∕n

)
, the three results in Theorem 1 reduce to:

||�̂� − �̃�||1 = Op
(√

log(p)∕n
)
,

̃k+1∑

𝑗=1

|
|
|
Pn𝜌
(
I
𝑗

(�̂�), ̂𝜷(�̂� , 𝑗)
)
− Pn𝜌

(
I
𝑗

(�̂�), 𝜷0(𝑗)
)|
|
|
= Op

(

s∗
log(p)

n𝛿2

)

, and

̃k+1∑

𝑗=1

|| ̂𝜷(�̂� , 𝑗) − 𝜷0(𝑗)||1 = Op

(

s∗𝛿
−3∕2

√
log(p)

n

)

. (19)
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Hence, by Equation (19), the estimation consistency can still be obtained as long as

s∗𝛿
−3∕2
√

log(p)
n

= o(1) holds. In other words, the number of change points ̃k cannot grow faster

than the order of
(

n
log(p)s2

∗

)1∕3
.

Next, we present theoretical results of change point estimators computed by BSA.

Theorem 2. Suppose Assumptions A–G hold with log(p) = o(n). For a given C2 > 0, with

probability of at least 1 − 7 exp
(

−C2
n2

log(p)

)

, we have that

(1) l(�̂�b) = ̃k;
(2) ||�̂�b − �̃�||1 ≤ c∗

√
𝛿𝜆;

(3)
∑̃k+1

𝑗=1
|
|Pn𝜌

(
I
𝑗

(�̂�b), ̂𝜷(�̂�b
, 𝑗)
)
− Pn𝜌

(
I
𝑗

(�̂�b), 𝜷0(𝑗)
)
|
| + 𝜆r

𝑗

(�̂�b)|| ̂𝜷(�̂�b
, 𝑗) − 𝜷0(𝑗)||1 ≤ (̃k + 1)

d∗s∗𝜆
2;

(4) for each 𝑗 ∈ {1,… ,
̂k},

√
n
(
̃
𝛽s(�̂� , 𝑗) − 𝛽

0
s (𝑗)
)
∕�̂�

𝑗,s = V
𝑗,s + oP(1), for s ∈ {1,… , p},

where ̃
𝛽s(�̂� , 𝑗) is the sth component of ̃𝜷(�̂� , 𝑗), V

𝑗,s ∼ (0, 1) and �̂�

2
𝑗,s ∶=

(
̂𝚯
𝑗

Pn�̇� ̂𝜷
�̇�

T
̂𝜷

̂𝚯T
𝑗

)

s,s.

Theorem 2 shows similar results as those of Theorem 1 in terms of consistency of both the
number and locations of change points. Furthermore, Theorem 2 allows us to use a much more
efficient algorithm to detect multiple change points for GLMs, which enjoys almost the same
estimation accuracy as that of the global solutions. The efficiency will be further investigated in
our numerical experiments.

Finally, we establish theoretical properties of FSA proposed in Algorithm 3 for single change
point models.

Theorem 3. Suppose Assumptions A–F hold with log(p) = o(n). Assume that the true single

change point 𝜏 ∈ (0, 1∕2). For a given C3 > 0, with probability of at least 1 − 7 exp
(

−C3
n2

log(p)

)

,
we have that

W 1
4
((0, 1)) < W 3

4
((0, 1)). (20)

Theorem 3 justifies the validity of Algorithm 3 and demonstrates that the cost of identifying
a single change point in GLMs can be reduced to only O(log(n)GLMLasso(n)) computational
operations.

4. SIMULATION STUDIES

In this section, we investigate the numerical performance of our three proposed change point
detection procedures in various model settings. For the design matrix X, we generate Xi i.i.d.
from (0,𝚺). We first consider two types of covariance matrix structures including independent
and weakly dependent settings as follows:

Case 1: 𝚺 = Ip×p;
Case 2: 𝚺 = 𝚺∗ with 𝚺∗ = (𝜎∗)pi,𝑗=1, where 𝜎

∗
i,𝑗 = 0.8|i−𝑗| for 1 ≤ i, 𝑗 ≤ p.
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We consider logistic regression models. For i = 1,… , n, we generate Yi ∈ {0, 1} with
g(ℙ(Yi = 1)) = log ℙ(Yi=1)

1−ℙ(Yi=1) = XT
i 𝜷

(i)
. Then the responses {Yi}n

i=1 are generated from the fol-

lowing binomial distribution: Yi|Xi ∼ Bin
(

1,
exp
(

XT
i 𝜷

(i)
)

1+exp
(

XT
i 𝜷

(i)
)

)

.

For this model set-up, we investigate the performance of our approaches in terms of accuracy
and efficiency. For efficiency, we compare our proposed algorithms in terms of the computational
cost. Note that BSA and DPA are designed for multiple change point detection. In order to
compare efficiency reasonably for the cases with no change point and a single change point, we
set these two algorithms to stop after one screening by making kmax = 1. To show the accuracy,
we record the mean, mean squared error (MSE), and error rate (proportion of false positives) of
the change point estimators including the number and locations. We compare the corresponding
results with the following existing methods:

• Lee, Seo & Shin (2011) (denoted by Lee2011), which is based on the maximum score
estimation.

• Qian & Su (2016) (denoted by SGL), which proposed a systematic estimation framework
based on the adaptive fused Lasso in linear regression models. To be specific, they estimate
{𝜷 t}n

t=1 by minimizing the 𝓁2-loss with the fused Lasso penalty. In this article, we modify
SGL by replacing the 𝓁2-loss with the loss 𝜌 defined in Section 2 for high-dimensional
GLMs.

• Wang, Lin & Willett (2021) (denoted by VPWBS), i.e., the variance projected wild binary
segmentation based on the sparse group Lasso estimator for linear regression models. In
particular, they projected the high-dimensional time series {Xi,Yi}n

i=1 onto the univariate time
series {zi(u)}n

i=1. The optimal projection direction u is obtained by local group Lasso screening
(LGS). Then they conducted mean change point detection by wild binary segmentation (WBS)
on the univariate time series {zi(u)}n

i=1. Note that, for linear models, LGS performs a variant
of the group Lasso on any subsample {Xi,Yi}e

i=s+1, and computes

(
�̂�1, �̂�2, 𝜈

)
← arg min

𝜈∈[s′+1,e′−1]
𝜶1,𝜶2∈ℝp

{
𝜈∑

i=s+1

(
Yi − X⊤

i 𝜶1
)2 +

e∑

t=𝜈+1

(
Yi − X⊤

i 𝜶2
)2

+𝜆G

p∑

𝑗=1

√

(𝜈 − s)
(
𝜶1,𝑗
)2 + (e − 𝜈)

(
𝜶2,𝑗
)2

}

, (21)

where s′ and e′ serve as boundary trimming parameters with s + 1 ≤ s′ + 1 < e′ ≤ e, and
𝜆G is the tuning parameter for the group penalty. For a better comparison in the context of
high-dimensional GLMs, we modify this 𝓁2-loss based method in Wang, Lin & Willett (2021)
by replacing the 𝓁2-loss in Equation (21) with the loss 𝜌

𝜷

(
Xi,Yi

)
defined in Section 2.

For our proposed approaches, the regression coefficients are computed by the R package
glmnet (https://glmnet.stanford.edu). All numerical results are based on 100 replications, except
for the test by Lee2011, which is based on 500 replications.

4.1. Tuning Parameter Selection
It is essential to properly choose the values of tuning parameters for accurate estimation results.
We develop a cross-validation approach for GLMs to choose the parameters 𝜆 and 𝛾 , which
encourage regression coefficient and segmentation sparsity, respectively. To be specific, let
the samples with odd indices be the training set (X1,X3,… ,Xn−3,Xn−1) and the others be
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the validation set (X2,X4,… ,Xn−2,Xn). For each of two tuning parameters 𝜆, 𝛾 , we conduct
our procedure on the training set and obtain the estimated change point �̂�(̂k) and underlying
regression coefficients ̂𝜷(�̂� , 𝑗), 𝑗 = 1,… ,

̂k. Let ̂
𝑓 i = X⊤

i
̂𝜷(�̂� , 𝑗), for i∕n ∈ I

𝑗

(𝝉) and i = 1,… , n.
We can calculate the validation loss as:

CV(𝜆, 𝛾) = 2
n

∑

i∶ i mod 2≡1

𝜌

(
̂
𝑓 i,Yi

)
,

where 𝜌 is the loss function of the GLMs and depends on the link function. For the specific
regression models such as the linear model and logistic regression model, the corresponding
validation losses are defined as:

CVLM(𝜆, 𝛾) =
2
n

∑

i∶ i mod 2≡1

( ̂𝑓 i − Yi)2, and

CVLogic(𝜆, 𝛾) =
2
n

∑

i∶ i mod 2≡1

log
(
1 + e ̂

𝑓 i
)
− y ̂

𝑓 i.

Then we choose (𝜆, 𝛾) corresponding to the lowest validation loss. Note that it is time-consuming
to use the cross-validation procedure to choose the tuning parameters for our various model
settings. Based on our extensive numerical simulations, we find that our methods are stable over
a certain range of tuning parameters. Hence, we use an empirical choice of the parameters 𝜆 and
𝛾 to save computational cost. In particular, we set 𝜆 = c

(√
log(2p)∕n + log(2p)∕n

)
, with c ∈

(0.15, 0.25). As for 𝛾 , we set 𝛾 = 𝛿𝜆. Recall 𝛿 is the minimum interval length and 𝛿n is the
minimum interval size, which controls the maximum number of change points. Note that 𝛿 is of
key importance for our theoretical guarantee discussed in Section 3.2 and needs to be carefully
chosen in simulation studies.

In order to ensure the effective fitting of the regression model, we need to guarantee a
sufficient sample size for each interval. According to our numerical studies, setting 𝛿 ∈ (0.1, 0.25)
works well. To investigate how sensitive our proposed methods are to the choice of these tuning
parameters, we consider various values of 𝜆 and 𝛾 by setting the sample size n ∈ {200, 300, 1000}
and data dimension p ∈ {200, 300, 400}. Note that our proposed methods can automatically
account for the underlying data generation mechanism and does not need to know the number
of change points. To justify this, in what follows, we present our numerical results under three
different cases: (1) ̃k = 0, (2) ̃k = 1, and (3) ̃k = 3, which correspond to data with no change
point, one change point, and multiple change points, respectively.

4.2. No Change Point Models
We consider the alternative scenario where no change point occurs. In this case, the underlying
regression coefficients satisfy 𝜷(i) = 𝜷0 ∶= (𝛽0

1 ,… , 𝛽

0
p )

⊤ for i = 1,… , n. We set the sample size

n = 200 and the data dimension p ∈ {200, 300, 400}. For s ∈ 0, we generate 𝛽

0
s

iid∼ U(0, 2),
where 0 denotes the set of nonzero elements of 𝜷0 with #0 = [log(p)].

We implement the corresponding algorithms independently on a 2.50 GHz CPU (Linux) with
6 cores and 4 GB of RAM. As shown in Figure 1 (left), the computational cost of BSA grows
moderately (12–737 s) as the data dimension increases from 400 to 2000, while the computational
cost of DPA grows exponentially (80–32,000 s). As for the accuracy, the error rates of VPWBS,
DPA, and BSA are zero in almost all cases, which suggests these three approaches have almost
the same accuracy when no change point occurs. SGL tends to overestimate the number of
change points for the homogeneous observations. Note that Lee2011 has relatively large errors,
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FIGURE 1: Efficiency of change point estimation with p = 2n. The left panel shows computational costs of
BSA and DPA per replication under the model with no change point. The right panel shows computational

costs of BSA and DPA per replication under the model of three change points.

TABLE 1: Change point detection for Cases 1 and 2 under the model with no change point. The numerical
results are based on averages of 100 replications.

Accuracy for the following methods

Case Measurement p SGL VPWBS Lee2011 DPA BSA

𝚺 = I Error rate 200 0.65 0.01 0.73 0.00 0.00

300 0.85 0.01 0.71 0.00 0.00

400 0.86 0.01 0.74 0.00 0.00

𝚺 = 𝚺∗ Error rate 200 0.38 0.00 0.71 0.00 0.00

300 0.44 0.01 0.71 0.00 0.00

400 0.47 0.00 0.72 0.00 0.00

which suggests that it may be unreliable in high-dimensional settings. Thus, we do not include it
in our comparisons for the single change point models (Table 1).

4.3. Single Change Point Models
Next we consider the alternative scenario where (𝜷(i))1≤i≤n have a common change point
location 𝜏1, where 𝜏1 ∈ {0.5, 0.7}. We set the sample size n = 300 and the data dimension
p ∈ {200, 300, 400}. Furthermore, we assume the regression coefficients have support set

{1
,2}. For s ∈ 1, we set 𝛽s(1)

iid∼ U(0, 2). Then, for s ∈ 2, we set 𝛽s(2) = 𝛽s(1) + 𝛿s with

𝛿s
i.i.d.∼ U(0, 10

√
log(p)∕n). For each replication, the support sets1,2 of regression coefficients

are randomly selected from the set {1, 2,… , 0.3p} with #1 = #2 = [log(p)].
Figure 2 (left) indicates that the computational cost of the BSA grows gradually with the

data dimension increasing from 400 to 2000 as compared with the exponential growth of the
DPA. Meanwhile, the computational cost of FSA in Algorithm 3 increases slowly as compared
with the “exponential” growth of the BSA, as shown in Figure 2 (right). This suggests that
FSA is preferable for single change point models. Furthermore, to investigate the computational
efficiency for high-dimensional cases, we present the computational cost of our three proposed
approaches in Figure 3. It implies that our proposed approaches have stable and good performance
as data dimension p grows.
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FIGURE 2: Efficiency of change point estimation under the single change point model with
n ∈ {200, 400, 600, 800, 1000} and p = 2n. The left panel shows the computational costs of BSA and
DPA per replication. The right panel shows computational costs per replication of BSA and FSA. The

change point is fixed at 𝝉1 = 0.5.
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FIGURE 3: Efficiency of change point estimation under the single change point model with
p ∈ {600, 1200, 1800, 2400, 3000} and n = 300. The left panel shows the computational costs of BSA
and DPA per replication. The right panel shows computational costs per replication of BSA and FSA. The

change point is fixed at 𝝉1 = 0.5.

As for the accuracy, we record the percentage of replications (rate (%)) in which DPA
and BSA correctly identified a single change point. Note that in Tables 2 and 3, MSEs for
the number and location are expressed as factors of 10−2 and 10−4, respectively. We can see
that DPA, BSA, and VPWBS can identify a single change point with high rates of success.
Furthermore, DPA generally has the best performance for estimating the single change point
location. VPWBS performs better than BSA, especially when the change occurs near the edge.
Both DPA and BSA perform slightly better than FSA. Note that all the proposed algorithms
perform better the closer the change point location is to the middle of the data observations,
e.g., 𝜏1 = 0.5.

4.4. Multiple Change Point Models
Finally, we consider the alternative scenario where (𝜷(i))1≤i≤n has multiple change point locations
�̃�2 with �̃�2 = (0, 0.25, 0.5, 0.75, 1)⊤. We set the sample size n = 1000 and the data dimension

p ∈ {200, 300, 400}. For s1 ∈ 1, we set 𝛽s1
(1) iid∼ U(0, 2). Then, for s

𝑗

∈ 𝑗 (𝑗 = 2, 3, 4), we

set 𝛽s
𝑗

(𝑗) = 𝛽s
𝑗

(𝑗 − 1) + (𝑗 − 1)𝛿s
𝑗

with 𝛿s
𝑗

i.i.d.∼ U(0, 10
√

log(p)∕n). For each replication, the
support set of regression coefficients  is randomly selected from the set {1, 2,… , 0.3p} with
#𝑗 = [log(p)], 𝑗 = 1, 2, 3, 4.
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TABLE 2: Single change point detection for Case 1 with 𝚺 = Ip×p under various dimensions and change
point locations, based on 100 replications.

Dimension p

𝜏1 Method 200 300 400

Number 0.5 SGL 2.49 | 19 2.36 | 17 2.48 | 23

Mean |Rate (%) VPWBS 1.02 | 96 1.01 | 98 1.02 | 97

DPA 1.00 | 100 1.01 | 99 1.00 | 100

BSA 1.00 | 100 1.00 | 100 1.00 | 100

0.7 SGL 2.48 | 23 2.48 | 23 2.64 | 14

VPWBS 1.01 | 97 1.04 | 96 0.99 | 95

DPA 1.04 | 96 1.02 | 98 1.03 | 97

BSA 1.00 | 100 1.00 | 100 1.00 | 100

Location 0.5 SGL - - -

Mean |MSE (10−4) VPWBS 0.497 | 2.244 0.500 | 3.590 0.496 | 6.322

DPA 0.499 | 1.836 0.503 | 2.256 0.499 | 3.254

BSA 0.498 | 2.446 0.501 | 3.779 0.499 | 6.445

FSA 0.495 | 19.21 0.496 | 9.326 0.493 | 11.18

0.7 SGL - - -

VPWBS 0.699 | 2.442 0.701 | 6.963 0.693 | 7.710

DPA 0.694 | 3.933 0.693 | 4.630 0.691 | 5.086

BSA 0.691 | 6.884 0.688 | 14.29 0.686 | 11.28

FSA 0.684 | 25.09 0.678 | 43.94 0.666 | 37.07

We first analyze the efficiency. The results are similar to the other cases. Figure 4 shows that
the computational cost of BSA grows gradually with the number of change points. In contrast,
the cost of the DPA grows substantially. This suggests that the efficiency of BSA is not sensitive
to the number of change points. To compare accuracy, similarly to the previous analysis, we
record the percentage of replications in which DPA and BSA can correctly identify the three
change points. As shown in Tables 4 and 5, DPA generally has the best performance. VPWBS
performs slightly better than BSA. However, there is not much difference in performance among
DPA, BSA, and VPWBS in terms of identifying the number and locations of multiple change
points.

It is worth mentioning that our proposed methods have good performance in all three models
with various data dimensions, sample sizes, and numbers of change points, which suggests that
the methods are robust to the suggested choice of tuning parameters 𝜆 and 𝛾 .

5. REAL DATA ANALYSIS

To illustrate the usefulness of our proposed methods, we consider the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (https://www.loni.ucla.edu/ADNI). The ADNI dataset
contains disease state information on different subjects including normal controls (NCs), mild
cognitive impairment (MCI), and Alzheimer’s disease (AD) as well as some biological markers
including features derived from magnetic resonance imaging (MRI) and positron emission

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11721
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TABLE 3: Single change point detection for Case 2 with 𝚺 = 𝚺∗ under various dimensions and change
point locations. The numerical results are based on 100 replications.

Dimension p

𝜏1 Method 200 300 400

Number 0.5 SGL 1.14 | 32 1.30 | 41 1.52 | 40

Mean |Rate (%) VPWBS 1.02 | 98 1.04 | 96 1.03 | 98

DPA 1.01 | 99 1.00 | 100 1.00 | 100

BSA 1.00 | 100 1.00 | 100 1.00 | 100

0.7 SGL 0.72 | 20 1.16 | 26 1.14 | 36

VPWBS 0.97 | 97 1.01 | 99 1.05 | 96

DPA 1.00 | 100 1.02 |98 1.01 | 99

BSA 0.99 | 99 1.00 |98 1.01 | 99

Location 0.5 SGL - - -

Mean |MSE VPWBS 0.504 | 5.056 0.495 | 3.146 0.498 | 3.572

DPA 0.498 | 2.145 0.502 | 1.423 0.499 | 3.670

BSA 0.493 | 5.897 0.498 | 3.347 0.498 | 4.326

FSA 0.495 | 12.21 0.489 | 20.10 0.492 | 9.374

0.7 SGL - - -

VPWBS 0.694 | 5.959 0.694 | 7.297 0.701 | 6.950

DPA 0.690 | 5.748 0.690 | 6.411 0.691 | 12.75

BSA 0.689 | 9.419 0.694 | 3.973 0.688 | 11.44

FSA 0.689 | 22.41 0.683 | 24.20 0.676 | 27.66

tomography (PET). It is very useful for clinical diagnosis and prevention to study how to
measure the progression of AD using the images. For example, in the AD-related literature
(see, for example, Reiss & Ogden, 2010), it is popular to use structural MRI or PET to predict
the current disease status of the patient (binary response variable), which can be regarded as a
classification problem. Usually, they treat the data as homogeneous and ignore the effect of other
covariate variables, such as age, gender, and so on. Hence, an interesting question is whether the
generalized linear structure between the disease status and biomarkers (MRI or PET) changes
due to other covariates. If it changes, how can one estimate (a) the number of change points, (b)
the locations of change points, and (c) the regression coefficients (selected variables) in each
segmentation? In our study, we address these issues by detecting change points in the generalized
linear structure between the disease status and the MRI features together with some covariates.
In this application, we choose age as the covariate, which is of particular interest in AD studies.

We use the MRI data of 405 subjects including 220 NCs and 185 AD patients from
the ADNI data. For each subject, we obtain the corresponding status (AD/NC), age, and
93 MRI features after using the data processing method proposed in Zhang & Shen (2012).
In our model, the predictive variables X = (X1,… ,X93) are the 93 MRI features, which are
scaled to have mean 0 and variance 1, and the response variable is the binary status obtained
by setting Yi = 1 {subject i is an AD patient}, and 0 otherwise. For this dataset {Xi,Yi}n

i=1,

consider the following logistic regression model: log (ℙ(Yi=1))
(ℙ(Yi=0)) = X⊤

i 𝜷
(i)
. Our goal is to detect
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FIGURE 4: Efficiency of change point estimation under the model of multiple change points with
n ∈ {200,400, 600,800, 1000} and p = 2n. The left panel shows the computational costs of BSA per
replication in the settings with different numbers of change points. The right panel shows computational

cost of DPA per replication in the settings with different numbers of change points.

TABLE 4: Multiple change point detection for Case 1 with 𝚺 = Ip×p under various dimensions.
The numerical results are based on 100 replications.

Accuracy for the following methods

𝝉2 = (0.25, 0.5, 0.75)⊤ p SGL VPWBS DPA BSA

Number Mean | Rate (%) 200 3.19 | 55 3.02 | 98 3.00 | 100 2.95 | 95

300 3.47 | 55 3.03 | 95 3.00 | 100 2.98 | 98

400 3.50 | 44 3.04 | 93 3.00 | 100 2.94 | 94

Location 1 Mean |MSE (10−5) 200 - 0.248 | 1.108 0.249 | 0.665 0.249 | 1.821

300 - 0.250 | 2.100 0.250 | 0.865 0.247 | 4.168

400 - 0.249 | 3.913 0.251 | 1.847 0.256 | 5.736

Location 2 Mean |MSE (10−5) 200 - 0.499 | 0.894 0.500 | 0.353 0.499 | 2.099

300 - 0.499 | 1.204 0.501 | 0.508 0.499 | 6.148

400 - 0.498 | 2.490 0.500 | 0.981 0.500 | 6.736

Location 3 Mean |MSE (10−5) 200 - 0.751 | 0.701 0.750 | 1.002 0.749 | 1.689

300 - 0.750 | 1.370 0.751 | 2.481 0.745 | 7.968

400 - 0.748 | 2.268 0.749 | 0.688 0.748 | 2.258

potential change points of regression coefficients in {𝜷(i)}n
i=1. Taking the effect of different

samples into consideration, in our analysis, we divide the data into two parts: training and testing
datasets. More specifically, we randomly select 40 subjects from the whole set of 405 subjects
according to the empirical distribution of age in Figure 5 (left) as the testing sample and use
the remaining 365 subjects as the training data. Then we sort those 365 observations in the
training data by age and use BSA to estimate the number and location of change points. We
choose the tuning parameters 𝜆 and 𝛾 as suggested in Section 4. The above process is repeated
100 times. As BSA is more computationally efficient than DPA, we use only BSA to analyze
the data.

Figure 5 (right) demonstrates the estimated numbers of change points for 100 replications.
To be specific, among the 100 replications, 80% of the estimated numbers of change points are 1
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TABLE 5: Multiple change point detection for Case 2 with 𝚺 = 𝚺∗ under various dimensions. The
numerical results are based on 100 replications.

Accuracy for the following methods

𝝉2 = (0.25, 0.5, 0.75)⊤ p SGL VPWBS DPA BSA

Number Mean | Rate(%) 200 2.65 | 30 3.00 | 100 3.00 | 100 2.99 | 99

300 2.08 | 17 2.97 | 99 3.00 | 100 2.98 | 98

400 2.47 | 25 3.00 | 100 3.00 | 100 2.98 | 98

Location 1 Mean |MSE (10−5) 200 - 0.247 | 2.435 0.250 | 1.961 0.251 | 3.457

300 - 0.249 | 3.164 0.251 | 2.844 0.250 | 6.585

400 - 0.251 | 1.687 0.251 | 2.497 0.249 | 4.994

Location 2 Mean |MSE (10−5) 200 - 0.487 | 2.040 0.500 | 1.069 0.499 | 2.667

300 - 0.502 | 1.403 0.501 | 0.894 0.499 | 4.363

400 - 0.499 | 2.212 0.501 | 3.613 0.500 | 4.192

Location 3 Mean |MSE (10−5) 200 - 0.748 | 1.242 0.750 | 0.711 0.748 | 1.674

300 - 0.752 | 1.672 0.750 | 0.486 0.749 | 1.398

400 - 0.747 | 4.511 0.750 | 0.580 0.747 | 4.881
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FIGURE 5: The left panel shows distribution of age among 405 subjects. The right panel shows estimated
numbers of change points based on 100 replications.

(k = 3), which suggests that there is a change point in the context of logistic regression between
the disease status and the MRI features due to the change of age. Moreover, Table 6 summarizes
the change point estimation results computed by BSA. For the change point estimation, 90%
of change points were estimated by BSA to be located at 80 years old and the mean is 79.95
years old. This implies that there are significant differences between the regression models of
the disease status and the MRI features under 80 and over 80 years old.

In terms of prediction, Table 6 provides the prediction results computed by BSA and the
Lasso-based method, where for each replication, we use the training sample to select models
and use the testing sample to predict. Note that the Lasso-based method treats the data as
homogeneous while we consider a heterogeneous model. For the prediction result, we calculate
the predictive MSE on the testing set for these two methods. Our proposed method obtains better
prediction performance, which is demonstrated by a 7% lower averaged predictive MSE than
that of the Lasso-based method. This suggests that treating the data as heterogeneous and using
our method to select models can predict better.
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TABLE 6: Change point estimation and prediction for ADNI data. The change point estimator is obtained
by using BSA based on 100 replications.

Training/testing sample Methods Location of change point Averaged MSE

365/40 BSA 79.75 0.380

Lasso-based - 0.408
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FIGURE 6: Frequency of features selected before the change point (left) and after the change point (right)
for the ADNI dataset based on 100 replications. Features selected by models both before and after the

change point are shown in red.

For variable selection, Figure 6 shows selected features before and after the estimated change
point of 80 years old. We see that models both under 80 and over 80 both select the 69th
and 83rd features, which correspond to the hippocampal and amygdala regions, respectively.
These regions are known to be related to AD by many previous studies (Zhang & Shen, 2012).
Moreover, there are a few different features selected separately by these two models under 80
and over 80. We believe these features deserve more scientific attention, and more research
studies are needed to study their associations with AD together with age.

6. SUMMARY

In this article, we provide a three-step procedure for change point detection in the context of
high-dimensional GLMs, where the dimension p can be much larger than the sample size n.
It is worth mentioning that our proposed method can automatically account for the underlying
data generation mechanism (̃k = 0 or ̃k > 0) without specifying any prior knowledge about the
number of change points ̃k. Moreover, based on dynamic programming and binary segmentation
techniques, two algorithms, DPA and BSA, are proposed to detect multiple change points.
To further improve the computational efficiency, we present a much more efficient algorithm
designed for the case of a single change point. Furthermore, we investigate the theoretical
properties of our proposed change point estimators computed by the three algorithms. Estimation
consistency for the number and locations of change points is established. Finally, we demonstrate
the efficiency and accuracy of our proposed methods by extensive numerical results under
various model settings. A real data application to the ADNI dataset also demonstrates the
usefulness of our proposed methods.
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APPENDIX

Notation
We introduce some notation. The random part, empirical process, is defined as{

vn(𝜷) ∶=
(
Pn − P

)
𝜌
𝑓𝜷
∶ 𝜷 ∈ ℝp

}

. We recall the Lasso estimator is, for 𝑗 = 1,… , k,

̂𝜷(𝑗) = arg min
𝜷

{

Pn𝜌𝑓𝜷 + 𝜆r
𝑗

(𝝉)||𝜷||1
}

. We write ̂
𝑓 = 𝑓

̂𝜷
and (𝜷) ∶= P

(
𝜌
𝑓𝜷
− 𝜌

𝑓

𝜷0

)
for

convenience. Recall that for any (u, v), the oracle 𝜷∗ is defined as 𝜷∗(u,v) ∶= arg min
𝜷

{

(
𝑓
𝜷

)}
,

which is the best approximation of 𝜷0 under the compatibility condition, 𝜷∗ = 𝜷0, if there is no
change point between u and v. The estimation error is denoted as 𝜖∗ ∶= vn(𝜷∗) =

(
Pn − P

)
𝜌
𝑓
𝜷∗
.

We define, for some positive constant L > 0, ZL ∶= sup‖𝛽−𝛽∗‖1≤L
|
|vn(𝛽) − vn (𝛽∗)|| . We set

L∗ ∶= 𝜖

∗∕𝜆0 and require a relatively small L∗, so this indicates that 𝜖∗ ≤ 𝜆

0
. Based on this, for

any u, v ∈ Vn ∶= {i∕n ∶ i = 1,… , n} with u < v, we define two important sets as follows:

0 ∶=
{

ZL∗ ≤ 𝜖

∗ ≤ 𝜆0
}
, (A1)

1 ∶=
{

max
(u,v)
‖
‖
‖
̂Σ(u,v) − (v − u)Σ‖‖

‖∞
≤ 𝜆1

}

. (A2)

We introduce the following assumptions.
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Assumption F. We require some technical conditions as follows:

(F1) 𝜆
√
𝛿 ≥ 8𝜆0, where 𝜆0 = O(

√
log(p)∕n).

(F2) 𝛾 > 3d∗s∗𝜆
2, where d∗ = O(1) with detailed definition introduced in the Appendix.

(F3) 𝛿m2
∗𝜙

2
∗s∗

8
> 𝛾 + 22𝜖∗, where 𝜖

∗ = O(s∗ log(p)∕n).

(F4) 𝜆𝛿m2
∗𝜙

2
∗s∗

8
> 22𝜖∗ − 𝜆𝛿M∗.

Assumption G. We require some conditions for achieving limit properties for the de-biased
Lasso estimator:

(G1) The derivatives �̇�(Y , a) ∶= d
da
𝜌(Y , a), �̈�(Y , a) ∶= d2

da2 𝜌(Y , a), exist for all y, a, and for
some 𝛿-neighbourhood (𝛿 > 0), �̈�(Y , a) is Lipschitz:

max
a0∈
{

X⊤

i 𝜷
0
}

|a−a0|∨|â−a0|≤𝛿
sup
Y∈

|�̈�(Y , a) − �̈�(Y , â)|
|a − â|

≤ 1

Moreover,

max
a0∈
{

X⊤

i 𝜷
0
}sup

Y∈

|
|
|
�̇�

(
y, a0
)|
|
|
= O(1), and max

a0∈
{

X⊤

i 𝜷
0
}

|a−a0|≤𝛿
sup sup |�̈�(Y , a)| = O(1).

(G2) It holds that ‖‖
‖

Pn�̈� ̂𝜷
̂𝚯T
𝑗

− e
𝑗

‖
‖
‖∞

= OP
(
𝜆∗
)
.

(G3) It holds that ‖‖
‖

X ̂𝚯T
𝑗

‖
‖
‖∞

= OP(K) and ‖‖
‖
̂𝚯
𝑗

‖
‖
‖1
= OP

(√
s∗
)

.

(G4) It holds that
‖
‖
‖
‖

(
Pn − P

)
�̇�

𝜷
0 �̇�

T
𝜷

0

‖
‖
‖
‖∞

= OP
(
K2

𝜆

)
and moreover max

𝑗

1∕
(
̂𝚯P�̇�

𝜷
0 �̇�

T
𝜷

0
̂𝚯T
)

𝑗,𝑗

= O(1).

(G5) For every 𝑗, the random variable

√
n
(
̂𝚯Pn�̇�𝜷0

)

𝑗

√(

̂𝚯P�̇�
𝜷0 �̇�

T
𝜷0

̂𝚯T
)

𝑗,𝑗

converges weakly to a

N(0, 1)-distribution.

Useful Lemmas
We introduce some useful lemmas that are essential for our main results. More specifically,
Lemma 1 presents the upper bound of the difference of the subinterval penalized empirical
average of the loss function based on the Lasso and oracle estimators. Corollary 1 shows
the equation in Lemma 1 holds with high probability. Lemma 2 provides the results for the
subinterval based on the compatibility condition. The margin condition based on the oracle
estimator is updated in Lemma 3. Lemma 4 presents the lower bound of the difference of the
loss function based on the oracle estimator of adjacent subintervals. Finally, Lemma 5 provides
the upper bound of the difference of the subinterval penalized empirical average of the loss
function based on the oracle estimator and the truth. Next, we will introduce these useful lemmas
in detail.

Lemma 1 (Oracle inequality for the Lasso). Suppose Assumptions A–F hold for all
|| ̂𝛽 − 𝛽

∗||1 ≤ L∗, as well as ||𝑓
𝜷
− 𝑓

∗
𝜷
||∞ ≤ L∗KX. Suppose that 𝜆 satisfies the inequality

DOI: 10.1002/cjs.11721 The Canadian Journal of Statistics / La revue canadienne de statistique



26 WANG, LIU, ZHANG AND LIU Vol. 00, No. 00

𝜆

√
𝛿 ≥ 8𝜆0. Then on the set 0 ∪ 1 given in (A1)–(A2), we have

|
|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(

(u, v), 𝜷∗(u,v)
)|
|
|
|
+ 𝜆

√
(u − v)|| ̂𝜷 − 𝜷∗||1 ≤ 6𝜖∗, (A3)

where there exists a constant C3 > 0 such that 𝜖∗ ≤ C3s∗ log(p)∕n.

Proof . Because the assumptions hold, on 0 ∪ 1, 8𝜆0 < 𝜆

√
𝛿 < 𝜆

√
(v − u), we have

|
|
|
|
P𝜌
(
(u, v), ̂𝜷(u,v)

)
− P𝜌

(

(u, v), 𝜷∗(u,v)
)|
|
|
|
+ 𝜆

√
(u − v)|| ̂𝜷 − 𝜷∗||1 ≤ 4𝜖∗,

by Theorem 6.4 in Bühlmann & van de Geer (2011). By the definition of Pn𝜌,P𝜌, and v(𝜷)
introduced in Section 3.1, we can obtain

|
|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(

(u, v), 𝜷∗(u,v)
)|
|
|
|

≤
|
|
|
|
P𝜌
(
(u, v), ̂𝜷(u,v)

)
− P𝜌

(

(u, v),𝜷∗(u,v)
)|
|
|
|
+ ||
|
v(𝜷∗) − v( ̂𝜷)||

|
.

If the condition || ̂𝜷 − 𝜷∗||1 ≤ L∗ holds, on the set 0 ∪ 1, we can have

|
|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(

(u, v), 𝜷∗(u,v)
)|
|
|
|
+ 𝜆

√
(u − v)|| ̂𝜷 − 𝜷∗||1 ≤ 4𝜖∗ + 2𝜖∗ = 6𝜖∗,

which completes the proof. ◼

Corollary 1. Suppose Assumptions A–F hold. Let an ∶= 4
(√

2 log(2p)
n

+ log(2p)
n

KX

)

and

𝜆0 ∶= 𝜆0(t) ∶= an

(

1 + t
√

2
(
1 + 2anKX

)
+

2t2anKX

3

)

.

Then we have, with probability of at least 1 − 7exp[−na−2
n t2] = 1 − exp

(
− C1

n2

log(p)

)
, that

Equation (A3) holds. We refer to Theorem 2.1 in van de Geer (2008).

Lemma 2. Suppose Assumption D and s∗𝜆1 ≤
𝜙

2
∗

32
hold. Then on the set 0 ∪ 1 , we have, for

all (u, v) ∈ {i∕n, i = 1,… , n} and all 𝜷 ∈ ℝp with ‖‖
‖
𝜷
𝑆∗
‖
‖
‖1
≤ 3 ‖‖
‖
𝜷
𝑆∗
‖
‖
‖1

,

‖
‖
‖
𝜷
𝑆∗
‖
‖
‖

2

1
≤

(
𝜷
⊤
̂Σ(u,v)𝜷

)
s∗

(v − u)𝜙2
∗

.

Proof . By Assumption D (the compatibility condition), for any u, v ∈ {i∕n, n = 1,… , n}, we
have

‖
‖
‖
𝛽
𝑆∗
‖
‖
‖

2

1
≤
||𝑓

𝛽

||2(v − u)s∗
(v − u)𝜙2

=
(
𝛽

T (v − u)Σ𝛽
)

s∗
(v − u)𝜙2

∗
,
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for all 𝛽 ∈ ℝp that satisfy ‖‖
‖
𝜷
𝑆∗
‖
‖
‖1
≤ 3 ‖‖
‖
𝜷
𝑆∗
‖
‖
‖1

. Then the matrix (v − u)𝚺 satisfies the compat-

ibility condition for the set 𝑆∗ with constant
√
(v − u)𝜓∗. By Corollary 6.8 in Bühlmann and

van de Geer (2011), if s∗𝜆1 ≤
𝜙

2
∗

32
, the compatibility condition also holds for the set 𝑆∗ and

the matrix ̂𝚺(u,v), with 𝜙

2
̂𝚺(u,v)

≥ (v − u)𝜙2
∗∕2. Then we can obtain, for all 𝜷 ∈ ℝn that satisfy

‖
‖𝜷𝑆𝜀

‖
‖1 ≤ 3 ‖‖𝜷𝑆.‖‖1,

‖
‖𝜷𝑆.

‖
‖

2
1 ≤

(

𝜷
T
̂𝚺(u,x)𝜷

)

s∗

𝜙

2
̂𝚺(0,v)

≤

2
(

𝜷
T
̂𝚺(u,t)𝜷

)

s∗

(v − u)𝜙2
∗

.

◼

Lemma 3. By Assumption B, there exists an 𝜂 ≥ 0 and strictly convex increasing G, such that
for all 𝜷1,𝜷2 ∈ ℝp with ||𝑓

𝜷1
− 𝑓

0||∞ ≤ 𝜂∕2, ||𝑓
𝜷
− 𝑓

0||∞ ≤ 𝜂 ||𝜷∗ − 𝜷0|| ≤ 𝜂, we have

|
|Pn𝜌(𝜷) − Pn𝜌(𝜷∗)|| ≥ C||X((𝜷 − 𝜷∗))||22 − 2𝜖∗.

Proof . According to Assumption C (margin condition), we can directly have

(𝑓
𝜷
) ≥ G(||𝑓

𝜷
− 𝑓

0||) ≥ C||𝑓
𝜷
− 𝑓

0||2.

By the definition of (𝑓
𝜷
), v(𝜷) introduced in Notation and the triangle inequality, we have

Pn𝜌(𝜷) − Pn𝜌(𝜷∗) ≥ C||𝑓
𝜷
− 𝑓

0||2 − 2𝜖∗.

By the definition of 𝜷∗, under the compatibility condition, 𝜷∗ is the best approximation of 𝜷0:
𝜷
∗ = 𝜷0. Then we have

Pn𝜌(𝜷) − Pn𝜌(𝜷∗) ≥ C||X((𝜷 − 𝜷∗))||22 − 2𝜖∗.
◼

Lemma 4. Suppose k0 > 1 and that Assumptions A–F and s∗𝜆1 ≤
𝜙

2
∗

32
hold. Then on 0 ∩ 1, if

(u, v) ⊂
(
𝜏
𝑗−1 − c∗

√
𝛿𝜆, 𝜏

𝑗+1 + c∗
√
𝛿𝜆

)
and u < 𝜏

𝑗

< v for some 𝑗 = 2,… ,
̃k − 1, we have

|
|
|
|
Pn𝜌

(

(u, 𝜏
𝑗

),𝜷∗(u,v)
)

− Pn𝜌

(

(u, 𝜏
𝑗

), 𝜷∗(u,𝜏
𝑗
)

)|
|
|
|
+
|
|
|
|
Pn𝜌

(

(𝜏
𝑗

, v),𝜷∗(u,v)
)

− Pn𝜌

(

(𝜏
𝑗

, v),𝜷∗(𝜏
𝑗
,v)

)|
|
|
|

≥
min
(
𝜏
𝑗

− u, v − 𝜏
𝑗

)
m2
∗𝜙

2
∗s∗

8
− 4𝜖∗.

Proof . By Lemmas 2 and 3, if (u, v) ⊂
(
𝜏
𝑗−1 − c∗

√
𝛿𝜆, 𝜏

𝑗+1 + c∗
√
𝛿𝜆

)
and u < 𝜏

𝑗

< v for some
𝑗 = 2,… ,

̃k − 1, we have

|
|
|
|
Pn𝜌

(

(u, 𝜏
𝑗

),𝜷∗(u,v)
)

− Pn𝜌

(

(u, 𝜏
𝑗

), 𝜷∗(u,𝜏
𝑗
)

)|
|
|
|
+
|
|
|
|
Pn𝜌

(

(𝜏
𝑗

, v),𝜷∗(u,v)
)

− Pn𝜌

(

(𝜏
𝑗

, v),𝜷∗(𝜏
𝑗
,v)

)|
|
|
|

≥ C
‖
‖
‖
‖

X
(

𝜷
∗
(u,v) − 𝜷

∗
(u,𝜏

𝑗
)

)‖
‖
‖
‖

2

2
+ C
‖
‖
‖
‖

X
(

𝜷
∗
(u,v) − 𝜷

∗
(𝜏

𝑗
,v)

)‖
‖
‖
‖

2

2
− 4𝜖∗
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≥

(𝜏
𝑗

− u)‖‖
‖
𝜷
∗
(u,v] − 𝜷

∗
(u,𝜏

𝑗
)
‖
‖
‖

2

1
𝜙

2
∗

2s∗
+
(v − 𝜏

𝑗

)‖‖
‖
𝜷
∗
(u,v) − 𝜷

∗
(𝜏

𝑗
,v]
‖
‖
‖

2

1
𝜙

2
∗

2s∗
− 4𝜖∗.

Now observe that

(v − u)𝛽∗(u,v] = (𝜏𝑗 − u)𝛽∗(u,𝜏
𝑗
) + (v − 𝜏

𝑗

)𝛽∗(𝜏
𝑗
,i).

Then

𝜷
∗
(u,v) − 𝜷

∗
(u,𝜏

𝑗
) =
(v − 𝜏

𝑗

v − u

)(

𝜷
∗
(𝜏

𝑗
,v] − 𝜷

∗
(u,𝜏

𝑗
)

)

,

by Assumption E. If (u, v) ⊂
(
𝜏
𝑗−1 − c∗

√
𝛿𝜆, 𝜏

𝑗+1 + c∗
√
𝛿𝜆

)
and u < 𝜏

𝑗

< v for some
𝑗 = 2,… ,

̃k − 1, we have

‖
‖
‖
𝜷
∗
(u,v] − 𝜷

∗
(u,𝜏

𝑗
]
‖
‖
‖1
≥
(v − 𝜏

𝑗

)m∗s∗
(v − u)

,

‖
‖
‖
𝜷
∗
(u,x] − 𝜷

∗
(𝜏

𝑗
,x)
‖
‖
‖1
≥
(𝜏

𝑗

− u)m∗s∗
(v − u)

. (A4)

Then, by the above Equation (A4) and straightforward calculations, we can obtain

(𝜏
𝑗

− u)‖‖
‖
𝜷
∗
(u,v] − 𝜷

∗
(u,𝜏

𝑗
)
‖
‖
‖

2

1
𝜙

2
∗

2s∗
+
(v − u)‖‖

‖
𝜷
∗
(u,v] − 𝜷

∗
(𝜏

𝑗
,v]
‖
‖
‖

2

1
𝜙

2
∗

2s∗

≥
(𝜏

𝑗

− u)2 + (v − 𝜏
𝑗

)2

(v − u)2
m2
∗𝜙

2
∗s∗

2
− 4𝜖∗.

As
(
(𝜏

𝑗

− u)2 + (v − 𝜏
𝑗

)2
)
∕(v − u)2 ≥ 1∕2, we can complete the proof. ◼

Lemma 5. Suppose Assumptions A–F hold and let (u, v) ⊂
(

𝜏
𝑗−1 − c∗

√
𝛿𝜆, 𝜏

𝑗

+ c∗
√
𝛿𝜆

)

∩

(0, 1] for some 𝑗 = 1,… ,
̃k + 1, and s∗𝜆1 ≤

𝜙

2
∗

32
, c∗
√
𝛿𝜆 < r(�̃�). Then on the set 0 ∩ 1, we have

|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(
(u, v), 𝜷0(𝑗)

)|
|
|
+ 𝜆

√
(u − v)|| ̂𝜷(u,v) − 𝜷0(𝑗)||1 ≤ d∗s∗𝜆

2
,

where b = 1
{

u < 𝜏
𝑗−1
}
+ 1
{
𝜏
𝑗

< v
}

, d∗ =
((

b2K2
Xc∗M∗ + b

)
c∗M∗ + 6C4

)
.

Proof . Firstly, by straightforward calculations, we can obtain

|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(
(u, v), 𝜷0(𝑗)

)|
|
|
+ 𝜆(u − v)|| ̂𝜷 − 𝜷0(𝑗)||1

≤
|
|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(

(u, v), 𝜷∗(u,v)
)|
|
|
|
+
|
|
|
|
Pn𝜌

(

(u, v),𝜷∗(u,v)
)

− Pn𝜌
(
(u, v),𝜷0(𝑗)

)|
|
|
|

+ 𝜆

√
(u − v)|||| ̂𝜷 − 𝜷

∗
(u,v)
|
|
|
|1 + 𝜆

√
(u − v)||||𝜷

∗
(u,v) − 𝜷

0(𝑗)||||1.

According to Lemma 1 and on the set 0, we can obtain

|
|
|
|
Pn𝜌
(
(u, v), ̂𝜷(u,v)

)
− Pn𝜌

(

(u, v), 𝜷∗(u,v)
)|
|
|
|
+ 𝜆

√
(u − v)|||| ̂𝜷 − 𝜷

∗
(u,v)
|
|
|
|1 ≤ 6𝜖∗ ≤ 6C4s∗𝜆2

. (A5)
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Now, we will present the bias between 𝜷∗u,v and 𝜷0
𝑗

, with (u, v] ⊂
(
𝜏
𝑗−1 − c∗

√
𝛿𝜆, 𝜏

𝑗

+ c∗
√
𝛿𝜆

)
.

Because 𝜆c∗
√
𝛿 < r(𝝉), by Assumption E, we can have that

|
|
|
|𝜷
∗
(u,v) − 𝜷

0(𝑗)||||∞ ≤
max

(
𝜏
𝑗−1 − u, 0

)

(v − u)
‖
‖
‖
𝜷

0(𝑗) − 𝜷0(𝑗 − 1)‖‖
‖∞

+
max

(
v − 𝜏

𝑗

, 0
)

(v − u)
‖
‖
‖
𝜷

0(𝑗 + 1) − 𝜷0(𝑗)‖‖
‖∞

≤
bM∗c∗𝜆
√

v − u
. (A6)

Furthermore, combining Assumptions A and C, Equation (A6), and the Cauchy–Schwarz
inequality, we have

|
|
|
|
Pn𝜌

(

(u, v), 𝜷∗(u,v)
)

− Pn𝜌
(
(u, v), 𝜷0(𝑗)

)|
|
|
|
+ 𝜆

√
(u − v)||||𝜷

∗
(u,v) − 𝜷

0(𝑗)||||1

≤ (v − u)||||X(𝜷
∗
(u,v) − 𝜷

0(𝑗))||||
2
2 + 𝜆

√
(u − v)||||𝜷

∗
(u,v) − 𝜷

0(𝑗)||||1

≤
(
b2K2

XM∗s∗ + b
)
c∗M∗s∗𝜆

2
. (A7)

Combining Equations (A5) and (A7) can complete the proofs. ◼

Proof of Theorem 1. To simplify the notation, we denote the value of the penalized total loss
function corresponding to the change point vector by

H(𝝉) =
l(𝝉)+1∑

𝑗=1

Pn𝜌

(

I
𝑗

(𝜏), ̂𝛽(𝝉 , 𝑗)
)

+ 𝛾l(𝝉). (A8)

First, we will show that if the assumptions hold, we must have l(�̂�) = ̃k and ||�̂� − �̃�||1 ≤ c∗
√
𝛿𝜆.

On the contrary, we assume �̂� does not satisfy the above two results. We can distinguish three
possible cases:

Case 1. Change point number is overestimated, l(�̂�) > ̃k. There exist some i, 1 ≤ i ≤ ̂k − 1,
such that {𝜏 i−1, 𝜏 i, 𝜏 i+1} ⊂

(
𝜏
𝑗−1 − c∗

√
𝛿𝜆, 𝜏

𝑗

+ c∗
√
𝛿𝜆

)
for some 𝑗, 1 ≤ 𝑗 ≤ ̃k.

Case 2. Change point number is underestimated, l(�̂�) < ̃k. For some 𝑗 = 1,… ,
̃k − 1, we have

�̂� ∩
(
𝜏
𝑗

− c∗
√
𝛿𝜆, 𝜏

𝑗

− c∗
√
𝛿𝜆

)
= ∅ and �̂� ∩

(
𝜏
𝑗

− c∗
√
𝛿𝜆, 𝜏

𝑗

− c∗
√
𝛿𝜆

)
= ∅.

Case 3. Change point number is correctly estimated, l(�̂�) = ̃k. However, for some 𝑗 = 1,… ,

̃k − 1, we have �̂� ∩
(
𝜏
𝑗

− c∗
√
𝛿𝜆, 𝜏

𝑗

− c∗
√
𝛿𝜆

)
= ∅ and �̂� ∩

(
𝜏
𝑗

− c∗
√
𝛿𝜆,

𝜏
𝑗

− c∗
√
𝛿𝜆

)
≠ ∅.

We first consider Case 1, where we have l(�̂�) > ̃k and there exists some i, such that
{𝜏 i−1, 𝜏 i, 𝜏 i+1} ⊂ (𝜏𝑗−1, 𝜏𝑗) for some 𝑗, 1 ≤ 𝑗 ≤ ̃k. We define

𝝉 =
(
𝜏1,… , 𝜏 i−1, 𝜏 i+1,… , 𝜏 l(𝜏)

)
.

Then we get a new change point vector 𝝉 with l(𝝉) = l(�̂�) − 1. Denote the intervals by
𝑆1 =

(
𝜏i−1, 𝜏i

]
, 𝑆2 =

(
𝜏i, 𝜏i+1

]
, and 𝑆 = (𝜏 i−1, 𝜏 i+1], and then we obtain

H(𝝉) − H(�̂�) = Pn𝜌

(

𝑆,
̂𝜷
𝑆

)

− Pn𝜌

(

𝑆1,
̂𝜷
𝑆1

)

− Pn𝜌

(

𝑆2,
̂𝜷
𝑆2

)

− 𝛾. (A9)
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By the definition of the Lasso estimator ̂𝜷 and the triangle inequality, we can directly have

Pn𝜌

(

𝑆,
̂𝜷
𝑆

)

≤ Pn𝜌
(
𝑆, 𝜷

0(𝑗)
)
+ 𝜆

√
||𝑆||

‖
‖
‖
𝜷

0(𝑗) − ̂𝜷J
‖
‖
‖1

. (A10)

Then, combining Equations (A9)–(A10), we can directly have

H(𝝉) − H(�̂�) ≤ Pn𝜌
(
𝑆, 𝜷

0(𝑗)
)
− Pn𝜌

(

𝑆1,
̂𝜷
𝑆1

)

− Pn𝜌

(

𝑆2,
̂𝜷
𝑆2

)

+ 𝜆

√
||𝑆||

‖
‖
‖
𝜷

0(𝑗) − ̂𝜷J
‖
‖
‖1
− 𝛾. (A11)

Using some straightforward calculations and the triangle inequality, we have

Pn𝜌
(
𝑆,𝜷

0(𝑗)
)
− Pn𝜌

(
𝑆1,

̂𝜷
𝑆1

)
− Pn𝜌

(
𝑆2,

̂𝜷
𝑆2

)

= Pn𝜌
(
𝑆1, 𝜷

0(𝑗)
)
+ Pn𝜌

(
𝑆2, 𝜷

0
𝑗

)
− Pn𝜌

(
𝑆1,

̂𝜷
𝑆1

)
− Pn𝜌

(
𝑆2,

̂𝜷
𝑆2

)

≤
|
|
|
Pn𝜌
(
𝑆1, 𝜷

0(𝑗)
)
− Pn𝜌

(
𝑆1,

̂𝜷
𝑆1

)|
|
|
+ ||
|
Pn𝜌
(
𝑆2,𝜷

0(𝑗)
)
− Pn𝜌

(
𝑆2,

̂𝜷
𝑆2

)|
|
|
. (A12)

By Lemma 5 and the above Equation (A12), with (u, v) = 𝑆1, 𝑆2, then we have

Pn𝜌
(
𝑆, 𝜷

0(𝑗)
)
− Pn𝜌

(
𝑆1,

̂𝜷
𝑆1

)
− Pn𝜌

(
𝑆2,

̂𝜷
𝑆2

)
≤ 2d∗s

∗
𝜆

2
. (A13)

Also by Lemma 5, for the second term in Equation (A10), we can directly have

𝜆

√
||𝑆||

‖
‖
‖
𝜷

0(𝑗) − ̂𝜷J
‖
‖
‖1
≤ d∗s

∗
𝜆

2
, (A14)

and therefore, by combining Equation (A11) and Equations (A13)–(A14), we can easily obtain

H(𝝉) − H(�̂�) ≤ 3d∗s
∗
𝜆

2 − 𝛾. (A15)

According to Assumption F2, we obtain M(𝝉) < M(�̂�), which is a contradiction.
For Case 2, where we have l(�̂�) < ̃k, we define a new change points vector 𝝉 = �̂� ∪ {𝜏

𝑗

},
that is,

𝝉 =
(
𝜏1,… , 𝜏ri−1, 𝜏ri

, 𝜏ri+1,… , 𝜏 l(𝜏)+1
)
, (A16)

where 𝜏ri
= 𝜏

𝑗

. We obtain a new change point vector 𝝉 with l(𝝉) = l(�̂�) + 1. Also we denote the
intervals by 𝑆1 =

(
𝜏ri−1, 𝜏ri

]
, 𝑆2 =

(
𝜏ri
, 𝜏ri+1

]
and 𝑆 =

(
𝜏ri−1, 𝜏ri+1

]
, then we have

H(�̂�) − H(𝝉) = Pn𝜌

(

𝑆,
̂𝜷
𝑆

)

− Pn𝜌

(

𝑆1,
̂𝜷
𝑆1

)

− Pn𝜌

(

𝑆2,
̂𝜷
𝑆2

)

− 𝛾. (A17)

By Lemma 1, for u, v ∈ Vn, we can obtain Pn𝜌

(

(u, v), ̂𝜷(u,v)
)

− Pn𝜌

(

(u, v),𝜷∗(u,v)
)

≤ 6𝜖∗. Thus,
by this inequality (with (u, v) = 𝑆1, 𝑆2, and 𝑆), the triangle inequality and Lemma 4, we
can have

Pn𝜌

(

𝑆,
̂𝜷
𝑆

)

− Pn𝜌

(

𝑆1,
̂𝜷
𝑆1

)

− Pn𝜌

(

𝑆2,
̂𝜷
𝑆2

)
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≥ Pn𝜌
(
𝑆, 𝜷

∗
𝑆

)
− Pn𝜌

(

𝑆1, 𝜷
∗
𝑆1

)

− Pn𝜌

(

𝑆2,𝜷
∗
𝑆2

)

− 3 ∗ (6𝜖∗)

≥
𝛿m2

∗𝜙
2
∗s∗

8
− 4𝜖∗ − 3 ∗ (6𝜖∗). (A18)

Then, by combining the above Equations (A17)–(A18), we can directly have

H(�̂�) − H(𝝉) ≥
𝛿m2

∗𝜙
2
∗s∗

8
− 4𝜖∗ − 3 ∗ (6𝜖∗) − 𝛾, (A19)

by Assumption F3, we have H(�̂�) > H(𝝉), which is a contradiction.
For Case 3 with l(�̂� = ̃k), we must add some points and remove others to obtain a good

change point estimator. Then we define 𝝉 (1) = �̂�
⋃
{𝜏

𝑗

} with 𝝉 (1)ri
= 𝜏

𝑗

. We denote the intervals
by 𝑆1 =

(
𝜏ri−1, 𝜏ri

]
, 𝑆2 =

(
𝜏ri
, 𝜏ri+1

]
, and 𝑆 =

(
𝜏ri−1, 𝜏ri+1

]
, and then we can obtain

H(�̂�) − H(𝝉 (1)) = Pn𝜌

(

𝑆,
̂𝜷
𝑆

)

− Pn𝜌

(

𝑆1,
̂𝜷
𝑆1

)

− Pn𝜌

(

𝑆2,
̂𝜷
𝑆2

)

− 𝛾. (A20)

Without loss of generality, we assume ||𝑆1
|
| < 𝛿 and define a new partition 𝝉 = 𝝉 (1) ⧵

{
𝜏

(1)
ri−1

}
.

By denoting K1 =
(
𝜏

(2)
ri−1, 𝜏

(1)
ri−1

)
and I = K1

⋃
𝑆1, then we have that

H(𝝉 (1)) − H(𝝉) = Pn𝜌

(

K1,
̂𝜷K1

)

+ Pn𝜌

(

𝑆1,
̂𝜷
𝑆1

)

− Pn𝜌

(

I, ̂𝜷I

)

+ 𝛾. (A21)

Thus, by combining Equations (A20) and (A21), with straightforward calculations,
we have

H(�̂�) − H(𝝉) = H(�̂�) − H
(
𝝉
(1)) + H

(
𝝉
(1)) − H(𝝉)

= Pn𝜌
(
𝑆,

̂
𝛽
𝑆

)
− Pn𝜌

(
𝑆2,

̂𝜷
𝑆2

)
+ Pn𝜌

(
K1,

̂𝜷K1

)
− Pn𝜌

(
I, ̂𝜷I
)
,

by the definition of the Lasso estimator and the triangle inequality, we can obtain

√
|I| ‖‖
‖
𝜷
∗
K1
− ̂𝜷I

‖
‖
‖1
≤
√
|I||𝜷∗I − ̂𝜷I

‖
‖
‖1 +

√
|I|‖‖
‖
𝜷
∗
K1
− 𝜷∗I ||||1

≤
√
|I| ‖‖
‖
𝜷
∗
I − ̂𝜷I

‖
‖
‖1
+
√
|I| 𝛿

√
|I|

M
,

s∗

≤
√
|I| ‖‖
‖
𝜷
∗
I − ̂𝜷I

‖
‖
‖1
+ 𝛿M∗s∗. (A22)

By Equation (A22), Lemmas 1 and 4, and straightforward calculations, we have

Pn𝜌
(
𝑆,

̂𝜷
𝑆

)
− Pn𝜌

(
𝑆2,

̂𝜷
𝑆2

)
+ Pn𝜌

(
K1,

̂𝜷K1

)
− Pn𝜌

(
I, ̂𝜷I
)

≥ Pn𝜌
(
𝑆,𝜷

∗
𝑆

)
− Pn𝜌

(

𝑆2, 𝜷
∗
𝑆2

)

+ Pn𝜌

(

K1,𝜷
∗
K1

)

− 18𝜖∗ − Pn𝜌

(

I, 𝜷∗K1

)

− 𝜆

√
|I| ‖‖
‖
𝜷
∗
K1
− ̂𝜷I

‖
‖
‖1
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≥ Pn𝜌
(
𝑆,𝜷

∗
𝑆

)
− Pn𝜌

(

𝑆2, 𝜷
∗
𝑆2

)

− Pn𝜌

(

𝑆1, 𝜷
∗
𝑆1

)

− 18𝜖∗ − 𝜆|I| ‖‖
‖
𝜷
∗
I − ̂𝜷I

‖
‖
‖1
− 𝜆𝛿M∗s∗

≥
𝜆𝛿m2

∗𝜙
2
s s∗

8
− 22𝜖∗ − 𝜆𝛿M∗.

According to Assumption F4, we can obtain H(�̂�) − H(𝝉) > 0, which is a contradiction. Above
all, the first two results (1) and (2) in Theorem 1 have been proved. Result (3) in Theorem 1 can
be directly obtained by combining (2) in Theorem 1 with Lemma 5.

Now we prove the fourth result in Theorem 1. Using that by condition ||
|
xi
̂𝚯T
𝑗

|
|
|
= ℙ(K),

we have

̂𝚯Pn�̇� ̂𝜷
= ̂𝚯Pn�̇�𝜷0 + ̂𝚯Pn�̈� ̂𝜷

(
̂𝜷 − 𝜷0) + Rem1,

where

Rem1 = ℙ(K)
n∑

i=1

|
|
|
xi
(
̂𝜷 − 𝜷0)||

|

2
∕n = (K)‖‖

‖
X
(
̂𝜷 − 𝜷0)‖‖

‖

2

n

= ℙ
(
Ks0𝜆

2) = oℙ(1),

it follows that

̃𝜷(𝝉 , 𝑗) − 𝜷0(𝑗) = ̂𝜷(𝝉 , 𝑗) − 𝜷0(𝑗) − ̂𝚯Pn�̇� ̂𝜷

= ̂𝜷(𝝉 , 𝑗) − 𝜷0(𝑗) − ̂𝚯
𝑗

Pn�̇�𝜷0 − ̂𝚯
𝑗

Pn�̈� ̂𝜷

(
̂𝜷(𝝉 , 𝑗) − 𝜷0(𝑗)

)
− Rem1

= − ̂𝚯Pn�̇�𝜷0 −
(
̂𝚯Pn�̈� ̂𝜷

− I
) (

̂𝜷(𝝉 , 𝑗) − 𝜷0(𝑗)
)
− Rem1

= − ̂𝚯Pn�̇�𝜷0 − Rem2.

By the proof of Theorem 3.1 in van de Geer et al. (2014), we have ̂𝚯Pn�̈� ̂𝜷
− I = O(𝜆). According

to the third result in Theorem 1, we have ̂𝜷(𝝉 , 𝑗) − 𝜷0(𝑗) = OP(s∗𝜆). Then, it follows that

|
|Rem2

|
| ≤
|
|Rem1

|
| + O (𝜆) ‖‖

‖
̂𝜷(𝝉 , 𝑗) − 𝜷0(𝑗)‖‖

‖1
= oP

(
n−1∕2) + OP

(
s∗𝜆

2) = oP
(
n−1∕2)

,

since the condition s∗𝜆
2 = o

(
s∗

log p
n

)
= o
(
n−1∕2

)
holds. By straight calculations, we have

√
n
(
̃𝜷(�̂� , 𝑗) − 𝜷0(𝑗)

)
= −
√

n ̂𝚯Pn�̇�𝜷0 −
√

nRem2

= −
√

n ̂𝚯Pn�̇�𝜷0 − oP(1).

By the proof of Theorem 3.1 in van de Geer et al. (2014), we can easily conclude that

√
n
(
̃
𝛽s(�̂� , 𝑗) − 𝛽

0
s (𝑗)
)
∕�̂�

𝑗,s = V
𝑗,s + oP(1), s ∈ {1,… , p},

where V
𝑗,s ∼ (0, 1) and �̂�

2
s ∶=

(
̂𝚯
𝑗

Pn�̇� ̂𝜷
�̇�

T
̂𝜷

̂𝚯
𝑗

T)

s,s. ◼
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Proof of Theorem 2. First we will show that under the conditions of Theorem 1, on 0 ∩ 1, we
have three cases:

Case A. Change point number is overestimated, l(�̂�) > ̃k. We have ̃k = 1 and l(�̂�b) = 1.
Case B. Change point number is underestimated, l(�̂�) < ̃k. For ̃k > 1, we have h(0, 1) and

l(�̂�b) = 0.
Case C. Change point number is correctly estimated, l(�̂�) = ̃k. For ̃k > 1, we have h(0, 1) ∈

[𝛿, 1 − 𝛿].
This fact can be derived straightforwardly from the proof of Theorem 1, as the objective

functions coincide for 1 or 2 segments; that is, for all u ∈ [0, 1],

H((0, u, 1)) = Z(0, u) + Z(u, 1).

For Case A, suppose ̃k = 1 and 𝝉 = (0, 1). As in the proof of Case 1 in Theorem 1, we can obtain

H(𝝉0) < min
u∈(𝛿,1−𝛿)

H((0, u, 1)),

and h(0, 1) = 0. We suppose ̃k > 1 and h(0, 1) ∉ ∪̃k−1
𝑗=1

(
𝜏
𝑗

− c∗𝛿𝜆, 𝜏
𝑗

− c∗𝛿𝜆
)
. We define 𝝉 (0) =

(0, h(0, 1), 1), 𝝉 (1) = 𝝉 (0) ∪
{
𝜏
𝑗

}
, 𝝉
(2) = 𝝉 (1) ⧵ {h(0, 1)}.

For Case B, h(0, 1) = 0, as in the proof of Case 2 in Theorem 1, we can obtain H(𝝉 (0)) >
H(𝝉 (1)). For Case C, h(0, 1) ∈ [𝛿, 1 − 𝛿], as in the proof of Case 3 in Theorem 1, we can obtain

H
(
𝝉
(0)) − H

(
𝝉
(2)) = H

(
𝝉
(0)) − H

(
𝝉
(1)) + H

(
𝝉
(1)) − H

(
𝝉
(2))

> 0.

Because h(0, 1) minimizes Equation (17), all three cases result in a contradiction. Then, we can
replace (0,1) by each subinterval and obtain the same results, which completes the proof. ◼

Proof of Theorem 3. Firstly, we recall our proposed statistics as follows:

W1∕4 −W3∕4 = Pn𝜌

((

0, 1
4

)

,
̂𝜷( 1

4 ,1
)

)

+ Pn𝜌

((1
4
, 1
)

,
̂𝜷( 1

4 ,1
)

)

− Pn𝜌

((

0, 3
4

)

,
̂𝜷(

0, 3
4

)

)

− Pn𝜌

((3
4
, 1
)

,
̂𝜷( 3

4 ,1
)

)

.

Then, for convenience, we consider two cases for the change point location denoted by 𝜏:

Case D. 0 < 𝜏 ≤ 1∕4,
Case E. 1∕4 < 𝜏 < 1∕2.

Next, we will discuss each case in detail. Case D: In this case, 0 < 𝜏 ≤ 1∕4, so we have

W1∕4 −W3∕4 =
(

Pn𝜌

((

0, 1
4

)

,
̂𝜷(

0, 1
4

)

)

− Pn𝜌

((

0, 1
4

)

,
̂𝜷(

0, 3
4

)

))

+
(

Pn𝜌

((1
4
,

3
4

)

,
̂𝜷( 1

4 ,1
)

)

− Pn𝜌

((1
4
,

3
4

)

,
̂𝜷(

0, 3
4

)

))

+
(

Pn𝜌

((1
4
, 1
)

,
̂𝜷( 1

4 ,1
)

)

− Pn𝜌

((3
4
, 1
)

,
̂𝜷( 3

4 ,1
)

))

.
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We observe there is no change point in (1∕4, 1). So the Lasso estimations of any subinterval
(u, v) ⊂ (1∕4, 1) make no difference and we can replace ̂𝜷( 1

4 ,1
) by ̂𝜷( 1

4 ,
3
4

) or ̂𝜷( 3
4 ,1
), and it

follows that

W1∕4 −W3∕4 =
(

Pn𝜌

((

0, 1
4

)

,
̂𝜷(

0, 1
4

)

)

− Pn𝜌

((

0, 1
4

)

,
̂𝜷(

0, 3
4

)

))

+
(

Pn𝜌

((1
4
,

3
4

)

,
̂𝜷( 1

4 ,
3
4

)

)

− Pn𝜌

((1
4
,

3
4

)

,
̂𝜷(

0, 3
4

)

))

. (A23)

We denote the intervals by J1 =
(
0, 1

4

)
, J2 =

( 1
4
,

3
4

)
, and J =

(
0, 3

4

)
. Equation (A23) can be

organized as follows:

W1∕4 −W3∕4

=
(
Pn𝜌
(
J1,

̂𝜷J1

)
− Pn𝜌

(
J1,

̂𝜷J
))
+
(
Pn𝜌
(
J2,

̂𝜷J2

)
− Pn𝜌

(
J2,

̂𝜷J
))

= Pn𝜌
(
J1,

̂𝜷J1

)
+ Pn𝜌

(
J2,

̂𝜷J2

)
− Pn𝜌

(
J, ̂𝜷J

)
.

Then using the same argument as Case 1 in Theorem 1, we can obtain W1∕4 < W3∕4.
Case E: In this case, 1∕4 < 𝜏 < 1∕2, we observe that there is no change point within these

two intervals (0, 1∕4) and (3∕4, 1). Then, by straightforward calculations, we can obtain

W1∕4 −W3∕4 = Pn𝜌

((1
4
, 1
)

,
̂𝜷( 1

4 ,1
)

)

− Pn𝜌

((

0, 3
4

)

,
̂𝜷(

0, 3
4

)

)

= Pn𝜌

((1
4
,

3
4

)

,
̂𝜷( 1

4 ,1
)

)

+ Pn𝜌

((3
4
, 1
)

,
̂𝜷( 1

4 ,1
)

)

− Pn𝜌

((

0, 1
4

)

,
̂𝜷(

0, 3
4

)

)

− Pn𝜌

((1
4
,

3
4

)

,
̂𝜷(

0, 3
4

)

)

.

We denote the intervals by (0, 1∕4) = K1, (1∕4, 3∕4) = J1, (3∕4, 1) = J2, and it follows that

W1∕4 −W3∕4

= Pn𝜌(J1,
̂𝜷J) + Pn𝜌(J2,

̂𝜷J) − Pn𝜌(K1,
̂𝜷I) − Pn𝜌(J1,

̂𝜷I).

Then using the same argument as Case 3 in Theorem 1, we can obtain W1∕4 < W3∕4. ◼
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